Please use this identifier to cite or link to this item:
Title: Silver nanoparticles prepared by gamma irradiation across metal organic framework templates
Authors: He, L
Dumée, LF
Liu, D
Velleman, L
She, F
Banos, C
Davies, JB
Kong, L
Keywords: Silver
Cobalt 60
Issue Date: 7-Jan-2015
Publisher: Royal Society of Chemistry
Citation: He, L., Dumée, L. F., Liu, D., Velleman, L., She, F., Banos, C., Davies, J. B., & Kong, L. (2015). Silver nanoparticles prepared by gamma irradiation across metal–organic framework templates. RSC Advances, 5(14), 10707-10715. doi:10.1039/C4RA10260F
Abstract: In this study, we demonstrate for the first time the successful fabrication of well-dispersed ultrafine silver nanoparticles inside metal–organic frameworks through a single step gamma irradiation at room temperature. HKUST-1 crystals are soaked in silver nitrate aqueous solution and irradiated with a Cobalt 60 source across a range of irradiation doses to synthesize highly uniformly distributed silver nano-particles. The average size of the silver nanoparticles across the Ag@HKUST-1 materials is found to vary between 1.4 and 3 nm for dose exposures between 1 and 200 kGy, respectively. The Ag@HKUST-1 hybrid crystals exhibit strong surface plasmon resonance and are highly durable and efficient catalytic materials for the reduction of 4-nitrophenol to 4-aminophenol (up to 14.46 × 10−3 s−1 for 1 kGy Ag@HKUST-1). The crystals can be easily recycled for at least five successive cycles of reaction with a conversion efficiency higher than 99.9%. The gamma irradiation is demonstrated to be an effective and environmental friendly process for the synthesis of nano-particles across confined metal–organic frameworks at room temperature with potential applications in environmental science. © 2015 The Royal Society of Chemistry
Gov't Doc #: 8769
ISSN: 2046-2069
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.