ANSTO Publications Online

Welcome to the ANSTO Institutional Repository known as APO.

The APO database has been migrated to version 7.5. The functionality has changed, but the content remains the same.

ANSTO Publications Online is a digital repository for publications authored by ANSTO staff since 2007. The Repository also contains ANSTO Publications, such as Reports and Promotional Material. ANSTO publications prior to 2007 continue to be added progressively as they are in identified in the library. ANSTO authors can be identified under a single point of entry within the database. The citation is as it appears on the item, even with incorrect spelling, which is marked by (sic) or with additional notes in the description field.

If items are only held in hardcopy in the ANSTO Library collection notes are being added to the item to identify the Dewey Call number: as DDC followed by the number.

APO will be integrated with the Research Information System which is currently being implemented at ANSTO. The flow on effect will be permission to publish, which should allow pre-prints and post prints to be added where content is locked behind a paywall. To determine which version can be added to APO authors should check Sherpa Romeo. ANSTO research is increasingly being published in open access due mainly to the Council of Australian University Librarians read and publish agreements, and some direct publisher agreements with our organisation. In addition, open access items are also facilitated through collaboration and open access agreements with overseas authors such as Plan S.

ANSTO authors are encouraged to use a CC-BY licence when publishing open access. Statistics have been returned to the database and are now visible to users to show item usage and where this usage is coming from.

 

Communities in ANSTO Publications Online

Select a community to browse its collections.

Now showing 1 - 5 of 5

Recent Submissions

Item
Phonon engineering in thermal materials with nano-carbon dopants
(AIP Publishing, 2024-06-01) Stamper, C; Cortie, DL; Nazrul-Islam, SMK; Rahman, R; Yu, DH; Yang, G; Al-Mamun, A; Wang, XL; Yue, ZJ
The unique geometric and thermal properties of carbon nanoparticles (NPs)—including nanotubes, graphene, and nanodiamonds—have led to their use as additives in many composite material systems. In this review, we investigate the mechanisms behind the altered thermal conductivity (κ) of thermoelectric (TE) and other thermal materials that have been composited with carbon NPs. We provide a comprehensive overview and analysis of the relevant theoretical and applied literature, including a detailed review of the available thermal conductivity data across five common classes of TE materials (Bi2Te3 variants, skutterudites, metal–oxide, SnSe, Cu2Se) in combination with carbon additives, including graphene, nanotubes, carbon black, carbon fiber, and C60. We argue that the effectiveness of carbon NPs in reducing κ in TE composites generally arises due to a combination of the presence of the carbon NP interfaces and significant changes in the microstructure of the host material due to compositing, such as suppressed grain growth and the introduction of pores, dislocations, and strain. Carbon NPs themselves are effective phonon scatterers in TE composites due to a significant mismatch between their high-frequency phonon distribution and the lower-frequency phonon distribution of the host material. While carbon NP doping has proven itself as an effective way to increase the performance of TE materials, there is still a significant amount of work to do to precisely understand the fundamental thermal transport mechanisms at play. Rigorous material characterization of nanocomposites and spectroscopic studies of the precise lattice dynamics will greatly aid the development of a fully quantitative, self-consistent model for the thermal conductivity of carbon nanocomposites. © 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
Item
Optimised modelling of weld metal constitutive behaviour in the net TG4 international weld simulation and measurement benchmark
(ASME International, 2012-07-15) Smith, MC; Muránsky, O; Austin, C; Bendeich, PJ; Edwards, L
The NeT TG4 benchmark specimen consists of a three pass type 316L TIG slot weld in a AISI type 316L plate. Phase one of the finite element simulation round robin performed on TG4 by the NeT network made the assumption that the weld metal exhibits the same mechanical behaviour as parent material. A comprehensive series of material characterisation tests on weld metal has now been completed, and these have allowed the derivation of a number of mixed isotropic-kinematic material models specifically for weld metal. The derived models have been used to improve the predicted stresses in the TG4 benchmark specimen. This paper first reviews the weld metal materials testing programme, and then discusses the optimum material hardening model fitting strategy to use for austenitic weld metal. The derived material models are tested by using them to predict residual stresses in the TG4 benchmark, and validating the predictions against the extensive database of measured residual stresses, and distortions. © 2012 by ASME
Item
Identifying the key sources of metal (loid) deposition to remote Tasmanian lakes: is legacy mining a problem?
(Springer Nature, 0202-03-07) Stevens, H; Barmuta, LA; Chase, Z; Saunders, KM; Zawadzki, A; Gadd, PS; Proemse, BC
Reports have shown that even remote lakes have been negatively affected by anthropogenic activities. This study used metal concentrations and enrichment factors to comprehensively determine key metal sources and identify potential impacts of recent anthropogenic activity in remote Central Highland Tasmanian (Australia) lakes. Metal concentrations (Al, As, Cd, Cu, Fe, Pb, and Zn) in these lakes remain below Australian interim sediment quality guidelines but have been slowly increasing since the start of the twentieth century. This increase is likely related to increasing organic matter content, rather than any direct, increased input of metals. The largest anthropogenic impact to these systems was damming, which typically led to an increase in organic matter content either directly, by the trapping of particles and nutrients, or indirectly, by stimulating primary production in the lake. This increased organic matter content, in turn, increased the retention of metals, manifesting as an increase to measured metal concentrations. Minor impacts are the historical use of lead shot, leaded petrol, and industrial processes, which may have contributed to the higher Pb enrichment, compared to the other studied metals, in these lakes. Despite recent concerns of metal contamination in the Tasmanian Wilderness World Heritage Area from distant mining activities, there is no strong evidence in this study indicating that lakes in the Central Highlands (a similar distance away) have been impacted by long-distance atmospheric deposition. This is likely related to the decreased rainfall, and thus decreased rates of wet deposition of aerosols in the east of Tasmania, compared to that of the west and in the Tasmanian Wilderness World Heritage Area. © The Author(s) 2024. - Open Access - This article is licensed under a Creative Commons Attribution 4.0 International License
Item
Accounting for phase transformations during welding of ferritic steels
(ASME International, 2012) Hamelin, CJ; Muránsky, O; Luzin, V; Bendeich, PJ; Edwards, L
The numerical application of solid-state phase transformation kinetics relating to conventional welding of ferritic steels is presented. The inclusion of such kinetics in weld models is shown to be necessary for capturing the post-weld residual stress field. To this end, a comparison of two approaches is outlined: a semi-empirical approach that uses thermodynamic transformation kinetics to predict phase morphology; and a fully empirical approach that directly links local material temperature to the present constituent phase(s). The semi-empirical analysis begins with prediction of TTT diagrams using thermodynamic principles for ferritic steels. The data is then converted to CCT diagrams using the Scheil-Avrami additive rule, including austenite grain growth kinetics. This information is used to predict the phases present under varying peak temperatures and cooling rates. In the fully empirical approach, dilatometric experiments of steel samples are performed during heating to simulate expected welding conditions. The constitutive response of the sample is then used as input for the subsequent numerical weld analyses. Input derived from each technique is transferred into weld models developed using the Abaqus finite element package. Model validation is carried out by direct comparison with neutron diffraction residual stress measurements on two beams of SA508 Gr.3 Cl.1 steel subjected to autogenous beam TIG welds under varying torch speeds, heat input and preheat conditions. © 2011 by ASME
Item
Predicting post-weld residual stresses in ferritic steel weldments
(ASME International, 2012-07-22) Hamelin, CJ; Muránsky, O; Bendeich, PJ; Edwards, L
The implementation of a semi-empirical solid-state phase transformation subroutine in the ABAQUS finite element package is presented to predict the influence of transformation strain on the post-weld residual stress field in ferritic steels. The phase transformation subroutine has been outlined in a previous study (PVP2011-57426), where it was proven accurate in predicting the phase compositions in the fusion and heat affected zone (HAZ) of an autogenous TIG beam weld in SA508 Gr.3 Cl.1 steel. While previous work focused on predictions of the steady-state material response using a 2D thermal model, the present analyses are 3D and capture the varying phase composition at weld start- and stop-ends. Predicted cooling rates at either end of the specimen are significantly higher, leading to a variation in the predicted microstructure along the weld line. To better understand the structural changes that occur in ferritic steels during a conventional welding process, a representative model of SA508 Gr.3 Cl.1 steel is discussed. The contribution of thermal, metallurgical, and transformation-induced plastic strain is highlighted in this example, providing insight to the key simulation variables necessary for accurate weld models of ferritic steels. Preliminary coupled thermo-mechanical analyses are presented that compare predicted residual stress distributions with those measured in SA508 Gr.3 Cl.1 beam welds via neutron diffraction; good agreement is observed. © 2012 by ASME