ANSTO Publications Online

Welcome to the ANSTO Institutional Repository known as APO.

The APO database has been migrated to version 7.5. The functionality has changed, but the content remains the same.

ANSTO Publications Online is a digital repository for publications authored by ANSTO staff since 2007. The Repository also contains ANSTO Publications, such as Reports and Promotional Material. ANSTO publications prior to 2007 continue to be added progressively as they are in identified in the library. ANSTO authors can be identified under a single point of entry within the database. The citation is as it appears on the item, even with incorrect spelling, which is marked by (sic) or with additional notes in the description field.

If items are only held in hardcopy in the ANSTO Library collection notes are being added to the item to identify the Dewey Call number: as DDC followed by the number.

APO will be integrated with the Research Information System which is currently being implemented at ANSTO. The flow on effect will be permission to publish, which should allow pre-prints and post prints to be added where content is locked behind a paywall. To determine which version can be added to APO authors should check Sherpa Romeo. ANSTO research is increasingly being published in open access due mainly to the Council of Australian University Librarians read and publish agreements, and some direct publisher agreements with our organisation. In addition, open access items are also facilitated through collaboration and open access agreements with overseas authors such as Plan S.

ANSTO authors are encouraged to use a CC-BY licence when publishing open access. Statistics have been returned to the database and are now visible to users to show item usage and where this usage is coming from.

 

Communities in ANSTO Publications Online

Select a community to browse its collections.

Now showing 1 - 5 of 5

Recent Submissions

Item
Influence of momentum acceptance on range monitoring of 11C and 15O ion beams using in-beam PET
(IOP Publishing, 2020-06-12) Mohammadi, A; Tashima, H; Iwao, Y; Takyu, S; Akamatsu, G; Kang, HG; Nishikido, F; Yoshida, E; Chacon, A; Safavi-Naeini, M; Parodi, K; Yamaya, T
In heavy-ion therapy, the stopping position of primary ions in tumours needs to be monitored for effective treatment and to prevent overdose exposure to normal tissues. Positron-emitting ion beams, such as 11C and 15O, have been suggested for range verification in heavy-ion therapy using in-beam positron emission tomography (PET) imaging, which offers the capability of visualizing the ion stopping position with a high signal-To-noise ratio. We have previously demonstrated the feasibility of in-beam PET imaging for the range verification of 11C and 15O ion beams and observed a slight shift between the beam stopping position and the dose peak position in simulations, depending on the initial beam energy spread. In this study, we focused on the experimental confirmation of the shift between the Bragg peak position and the position of the maximum detected positron-emitting fragments via a PET system for positron-emitting ion beams of 11C (210 MeV u-1) and 15O (312 MeV u-1) with momentum acceptances of 5% and 0.5%. For this purpose, we measured the depth doses and performed in-beam PET imaging using a polymethyl methacrylate (PMMA) phantom for both beams with different momentum acceptances. The shifts between the Bragg peak position and the PET peak position in an irradiated PMMA phantom for the 15O ion beams were 1.8 mm and 0.3 mm for momentum acceptances of 5% and 0.5%, respectively. The shifts between the positions of two peaks for the 11C ion beam were 2.1 mm and 0.1 mm for momentum acceptances of 5% and 0.5%, respectively. We observed larger shifts between the Bragg peak and the PET peak positions for a momentum acceptance of 5% for both beams, which is consistent with the simulation results reported in our previous study. The biological doses were also estimated from the calculated relative biological effectiveness (RBE) values using a modified microdosimetric kinetic model (mMKM) and Monte Carlo simulation. Beams with a momentum acceptance of 5% should be used with caution for therapeutic applications to avoid extra dose to normal tissues beyond the tumour when the dose distal fall-off is located beyond the treatment volume. © 2020 Institute of Physics and Engineering in Medicine
Item
Erratum: Influence of momentum acceptance on range monitoring of 11C and 15O ion beams using in-beam PET (2020 Phys. Med. Biol. 65 125006)
(IOP Publishing, 2020-11-21) Mohammadi, A; Tashima, H; Iwao, Y; Takyu, S; Akamatsu, G; Kang, HG; Nishikido, F; Yoshida, E; Chacon, A; Safavi-Naeini, M; Parodi, K; Yamaya, T
In heavy-ion therapy, the stopping position of primary ions in tumours needs to be monitored for effective treatment and to prevent overdose exposure to normal tissues. Positron-emitting ion beams, such as 11C and 15O, have been suggested for range verification in heavy-ion therapy using in-beam positron emission tomography (PET) imaging, which offers the capability of visualizing the ion stopping position with a high signal-to-noise ratio. We have previously demonstrated the feasibility of in-beam PET imaging for the range verification of 11C and 15O ion beams and observed a slight shift between the beam stopping position and the dose peak position in simulations, depending on the initial beam energy spread. In this study, we focused on the experimental confirmation of the shift between the Bragg peak position and the position of the maximum detected positron-emitting fragments via a PET system for positron-emitting ion beams of 11C (210 MeV u−1) and 15O (312 MeV u−1) with momentum acceptances of 5% and 0.5%. For this purpose, we measured the depth doses and performed in-beam PET imaging using a polymethyl methacrylate (PMMA) phantom for both beams with different momentum acceptances. The shifts between the Bragg peak position and the PET peak position in an irradiated PMMA phantom for the 15O ion beams were 1.8 mm and 0.3 mm for momentum acceptances of 5% and 0.5%, respectively. The shifts between the positions of two peaks for the 11C ion beam were 2.1 mm and 0.1 mm for momentum acceptances of 5% and 0.5%, respectively. We observed larger shifts between the Bragg peak and the PET peak positions for a momentum acceptance of 5% for both beams, which is consistent with the simulation results reported in our previous study. The biological doses were also estimated from the calculated relative biological effectiveness (RBE) values using a modified microdosimetric kinetic model (mMKM) and Monte Carlo simulation. Beams with a momentum acceptance of 5% should be used with caution for therapeutic applications to avoid extra dose to normal tissues beyond the tumour when the dose distal fall-off is located beyond the treatment volume. © 2020 Institute of Physics and Engineering in Medicine.
Item
Electron beam welding of stainless steels
(International Institute of Welding, 1976-08-23) Chrimes, NWD; Gardner, RV
A review is given of some of the principal problems encountered in the operation of a 30kV 500 mA electron beam unit installed at Lucas Heights in 1970. The principal welding parameters for the successful operation of a unit of this type are discussed, with particular emphasis on gun to work distance and vacua, and their effect on the weld properties.
Item
Modulating the isotopic hydrogen-deuterium exchange in functionalized nanocellulose to optimize SANS contrast
(Elsevier, 2024-12) Raghuwanshi, VS; Mendoza, DJ; Mata, JP; Garnier, GFG
Contrast matching by isotopic exchange in cellulose allows visualizing functional groups, biomolecules, polymers and nanoparticles embedded in cellulosic composites. This isotopic exchange varies the scattering length density of cellulose to match its contrast with the background network. Here, contrast matching of microcrystalline-cellulose (MCC) and the functionalized nanocellulose-fiber (CNF) and cellulose nanocrystals (CNC) are elucidated by small angle neutron scattering (SANS). Results show no isotopic exchange occurs for the CNF surface functionalized with carboxyl nor for the CNC-High with a high sulfate groups concentration. Both CNC-Low, with low sulfate groups, and MCC exchange 1H with 1D in D2O. This is due to the high exchange probability of the labile C6 position primary -OH group. The structure of thermo-responsive poly-N-isopropylacrylamide (PNIPAM) chains grafted onto CNF (PNIPAM-grafted-CNF) was extracted by CNF contrast matching near the lower critical solution temperature. Contrast matching eradicates the CNF scattering to retain only the scattering from the grafted-PNIPAM chains. The coil to globule thermo-transition of PNIPAM was revealed by the power law variation from q−1.3 to q−4 in SANS. Isotopic exchange in functionalized cellulosic materials reveals the nano- and micro-scale structure of its individual components. This improved visualization by contrast matching can be extended to carbohydrate polymers to engineer biopharmaceutical and food applications. © 2024 The Authors. Published by Elsevier Ltd. - Open Access CC BY 4.0
Item
Enhanced structural analysis through a hybrid analogue-digital mapping approach: integrating field and UAV survey with microtomography to characterize metamorphic rocks
(Elsevier, 2004-10) Fazio, E; Ortolano, G; Alsop, GI; D'Agostino, A; Vasalli, R; Luzin, V; Salvemini, F; Cirrincione, R
This study focused on collecting structural data orientations of a crustal-scale shear zone (Palmi Shear Zone, PSZ, southern Calabria, Italy) by integrating various analytical and field-based techniques. The PSZ consists of deformed metamorphic rocks (migmatitic biotitic paragneiss, marbles, and skarns) showing multiple folding phases, and Hercynian tonalites and pegmatites (306-290 Ma), crosscut by Late Hercynian leucocratic dykes (ca. 290 Ma). Multi-sized clasts composed of different lithologies are preserved on clean outcrop surfaces, and are sheared into both σ - and δ -type objects that collectively suggest opposing senses of shear. The study incorporates structural analysis of folds, field and aerial surveys (UAV), digital mapping, and microcomputed tomography. Various kinematic indicators were observed in the PSZ, indicating a mix of factors influencing the shear strain patterns (e.g. fold interference patterns, different rock types with high viscosity contrast). The findings suggest a clear consistency between structural data inferred from 3D VOM (Virtual Outcrop Model) and those collected directly in the field, confirming the occurrence of both sinistral and dextral shear in the PSZ, providing important insights into the tectonic evolution of the Calabrian-Peloritani Terrane. Crown Copyright © 2024 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).