Towards sustainable energy. Generation of hydrogen fuel using nuclear energy
No Thumbnail Available
Date
2016-06-03
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Ltd.
Abstract
The increasing demand for sustainable energy results in the development of new technologies of energy generation. The key objective of hydrogen economy is the introduction of hydrogen as main energy carrier, along with electricity, on a global scale. The key goal is the development of hydrogen-related technologies needed for hydrogen generation, hydrogen storage, hydrogen transportation and hydrogen distribution as well as hydrogen safety systems. It is commonly believed that hydrogen is environmentally clean since its combustion results in the formation of water. However, the technology currently employed for the generation of hydrogen from natural gas, does in fact lead to the emission of greenhouse gases and climate change. Therefore, the key issues in the introduction of hydrogen economy involve the development of environmentally clean hydrogen production technology as well as storage and transport. The clean options available for hydrogen generation using nuclear energy; such as advanced nuclear fission and, ultimately, nuclear fusion, are discussed. The latter, which is environmentally clean, is expected to be the primary approach in the production of hydrogen fuel at the global scale. The present work considers the effect of hydrogen on properties of TiO2 and its solid solutions in the contexts of photocatalytic energy conversion and the effect of tritium on advanced tritium breeders. © 2016 Hydrogen Energy Publications LLC.
Description
Keywords
Hydrogen fuels, Nuclear energy, Sustainability, Energy source development, Sustainable development, Hydrogen storage, Greenhouse gases, Climatic change
Citation
Nowotny, J., Hoshino, T., Dodson, J., Atanacio, A. J., Ionescu, M., Peterson, V., Prince, K. E., Yamawaki, M., Bak, T., Sigmund, W., Veziroglu, T. N., & Alim, M. A. (2016). Towards sustainable energy. Generation of hydrogen fuel using nuclear energy. International Journal of Hydrogen Energy, 41(30), 12812-12825. doi:10.1016/j.ijhydene.2016.05.054