ANSTO Publications Online >
ANSTO Publications >
Scientific and Technical Reports >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/888

Title: Compound nucleus formulation of reaction matrix theory.
Authors: Cook, JL
Bertram, WK
Issue Date: Feb-1972
Publisher: Australian Nuclear Science and Technology Organisation
Abstract: It is shown that multilevel resonance parameters for each element of the reaction matrix cannot be determined from available data. However, additional constraints may be introduced without affecting agreement with experiment. The Bohr compound nucleus hypothesis is applied to the T-matrix and it is found, as in Newton's model, that the channel matrix can be inverted analytically to provide simple formulae for cross sections, for both the real Wigner-Eisenbud reaction matrix and Moldauer's complex reaction matrix. Wigner-Eisenbud theory leads directly to Newton's strong correlation model and its unacceptable consequences. Moldauer's theory does not and can explain cross section behaviour adequately while being consistent with Bohr's hypothesis. Cross sections can be written as a sum of single level contributions, as in the Adler-Adler formulation. Finally, Moldauer's statistical theory is shown to be applicable, and expressions are derived fr the averaged cross sections as functions of the complex Moldauer resonance parameters.
URI: http://apo.ansto.gov.au/dspace/handle/10238/888
ISBN: 0642994358
Appears in Collections:Scientific and Technical Reports

Files in This Item:

File Description SizeFormat
AAEC-TM-597.pdf642.42 kBAdobe PDFView/Open

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback