ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/8693

Title: Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements
Authors: Cai, MY
Wang, L
Keywords: ISOTOPES
HYDROLOGY
HEAT
METEOROLOGY
OXYGEN
HYDROGEN
Issue Date: Apr-2015
Publisher: Elsevier
Citation: Cai, M. Y., Wang, L., Parkes, S. D., Strauss, J., McCabe, M. F., Evans, J. P., & Griffiths, A. D. (2015). Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements. Journal of Hydrology, 523, 67-78. doi: http://dx.doi.org/10.1016/j.jhydrol.2015.01.019
Abstract: The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10 m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (∼1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate between different hydrological components and add insight into expected hydrological behavior. © 2015, Elsevier B.V.
URI: http://dx.doi.org/10.1016/j.jhydrol.2015.01.019
http://apo.ansto.gov.au/dspace/handle/10238/8693
ISSN: 0022-1694
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback