ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/8526

Title: New insights into phase distribution, phase composition and disorder in Y2(Zr,Sn)2O7 ceramics from NMR spectroscopy
Authors: Ashbrook, SE
Mitchell, MR
Sneddon, S
Moran, RF
de los Reyes, M
Lumpkin, GR
Whittle, KR
Keywords: SPECTROSCOPY
CERAMICS
PYROCHLORE
FLUORITE
VARIATIONS
ZIRCONIUM
Issue Date: 2-Mar-2015
Publisher: Royal Society of Chemistry
Citation: Ashbrook, S.E., Mitchell, M.R., Sneddon, S., Moran, R. F., de los Reyes, M., Lumpkin, G. R., & Whittle, K. R. (2015). New insights into phase distribution, phase composition and disorder in Y2(Zr,Sn)2O7 ceramics from NMR spectroscopy. Physical Chemistry Chemical Physics, 17(14), 9049-9059. doi: http://dx.doi.org/10.1039/C4CP05827E
Abstract: A combination of 89Y and 119Sn NMR spectroscopy and DFT calculations are used to investigate phase evolution, local structure and disorder in Y2Zr2−xSnxO7 ceramics, where a phase change is predicted, from pyrochlore to defect fluorite, with increasing Zr content. The ability of NMR to effectively probe materials that exhibit positional and compositional disorder provides insight into the atomic-scale structure in both ordered and disordered phases and, by exploiting the quantitative nature of the technique, we are able to determine detailed information on the composition of the phase(s) present and the average coordination number (and next-nearest neighbour environment) of the cations. In contrast to previous studies, a more complex picture of the phase variation with composition emerges, with single-phase pyrochlore found only for the Sn end member, and a single defect fluorite phase only for x = 0 to 0.6. A broad two-phase region is observed, from x = 1.8 to 0.8, but the two phases present have very different composition, with a maximum of 13% Zr incorporated into the pyrochlore phase, whereas the composition of the defect fluorite phase varies throughout. Preferential ordering of the anion vacancies in the defect fluorite phase is observed, with Sn only ever found in a six-coordinate environment, while remaining vacancies are shown to be more likely to be associated with Zr than Y. Our findings are then discussed in the light of those from previous studies, many of which utilize diffraction-based approaches, where, in most cases, a single phase of fixed composition has been assumed for the refinement procedure. The significant and surprising differences encountered demonstrate the need for complementary approaches to be considered for a detailed and accurate picture of both the long- and short-range structure of a solid to be achieved. © Royal Society of Chemistry 2017
URI: http://dx.doi.org/10.1039/C4CP05827E
http://apo.ansto.gov.au/dspace/handle/10238/8526
ISSN: 1463-9076
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback