Particulate pollution in the Sydney region: source diagnostics and synoptic controls
Loading...
Date
2016-04-04
Journal Title
Journal ISSN
Volume Title
Publisher
Gigvvy Science
Abstract
Airborne particulate matter (PM2.5) was sampled at Richmond and Liverpool, located in the Sydney Basin, Australia,
and ion beam analysis was used to obtain the elemental composition. Using self-organising maps to classify synoptic
weather systems, it was found that high PM2.5 concentrations were associated with high pressure systems located to the
east of the sampling sites. The highest median sulfur was associated with weak synoptic conditions and high soil dust days
were more often associated with frontal systems.
To investigate the effect of local flows in the Sydney Basin, the Weather Research and Forecasting model (WRF) was
used to generate meteorological data of 12 km resolution. A comparison was made between back trajectories generated
using the higher-resolution WRF data, the 0.5° by 0.5° Climate Forecast System data and the 1° by 1° Global Data
Assimilation System data. It was found that for high soil dust days, there were small differences between the different back
trajectories. However, under weak synoptic conditions (high sulfur days), the back trajectories generated from higher
resolution data showed larger variations over a 24 hr period. This was attributed to the meandering of local winds and seabreezes.
Lower altitude back trajectories, generated from low resolution data, passed more often over the power stations located
on the western side of the Great Dividing Range (while the sampling sites are on the east). This demonstrates the need for
higher resolution meteorological data for generating low altitude back trajectories when the source and receptor are
separated by hilly terrain.
In estimating the number of high sulfur days for which a power station was crossed, there was up to 20% difference at
Liverpool and up to 10% difference at Richmond, between back trajectories starting at different altitudes and generated
from meteorological data of three different resolutions. © Taiwan Association for Aerosol Research
Description
Keywords
Pollution, Plasma diagnostics, Pressure range mega pa 10-100, Meteorology, Sulfur, Soils
Citation
Crawford, J, Griffiths, A, Cohen, D. D, Jiang, N, & Stelcer, E, (2016). Particulate pollution in the Sydney region: source diagnostics and synoptic controls. Aerosol and Air Quality Research, 16(4), 1055–1066. doi:10.4209/aaqr.2015.02.0081