ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/6699

Title: Charge collection efficiency degradation induced by MeV ions in semiconductor devices: model and experiment
Authors: Vittone, E
Pastuovic, Z
Breese, M
Garcia Lopez, J
Jaksic, M
Raisanen, J
Siegele, R
Simon, A
Vizkelethy, G
Keywords: SILICON DIODES
MEV RANGE
IONS
SEMICONDUCTOR DEVICES
BINARY FISSION
PHYSICAL RADIATION EFFECTS
Issue Date: 1-Jan-2016
Publisher: Elsvier
Citation: Vittone, E., Pastuovic, Z., Breese, M. B. H., Garcia Lopez, J., Jaksic, M., Raisanen, J., . . . Vizkelethy, G. (2016). Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 372, 128-142. doi: http://dx.doi.org/10.1016/j.nimb.2016.01.030
Abstract: This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials. © 2016 Elsevier B.V.
URI: http://dx.doi.org/10.1016/j.nimb.2016.01.030
http://apo.ansto.gov.au/dspace/handle/10238/6699
ISSN: 0168-583X
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback