Improved mixing height monitoring through a combination of lidar and radon measurements

Loading...
Thumbnail Image
Date
2013-02-01
Journal Title
Journal ISSN
Volume Title
Publisher
European Geosciences Union
Abstract
Surface-based radon (222Rn) measurements can be combined with lidar backscatter to obtain a higher quality time series of mixing height within the planetary boundary layer (PBL) than is possible from lidar alone, and a more quantitative measure of mixing height than is possible from only radon. The reason why lidar measurements are improved is that there are times when lidar signals are ambiguous, and reliably attributing the mixing height to the correct aerosol layer presents a challenge. By combining lidar with a mixing length scale derived from a time series of radon concentration, automated and robust attribution is possible during the morning transition. Radon measurements provide mixing information during the night, but concentrations also depend on the strength of surface emissions. After processing radon in combination with lidar, we obtain nightly measurements of radon emissions and are able to normalise the mixing length scale for changing emissions. After calibration with lidar, the radonderived equivalent mixing height agrees with other measures of mixing on daily and hourly timescales and is a potential method for studying intermittent mixing in nocturnal boundary layers.© 2013, Copernicus Publications.
Description
Keywords
Radon, Optical radar, Atmospheres, Boundary layers, Daily variations, Data
Citation
Griffiths, A. D., Parkes, S. D., Chambers, S. D., McCabe, M. F., & Williams, A. G. (2013). Improved mixing height monitoring through a combination of lidar and radon measurements. Atmospheric Measurement Techniques, 6(2), 207-218. doi:10.5194/amt-6-207-2013
Collections