Repository logo


Combined experimental and computational study of oxide ion conduction dynamics in Sr2Fe2O5 brownmillerite

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

American Chemical Society

Abstract

We report a detailed study of the dynamics of oxide ionic conduction in brownmillerite-type Sr2Fe2O5, including lattice anisotropy, based on neutron scattering studies of a large (partially twinned) single crystal in combination with ab initio molecular dynamics simulations. Single-crystal diffraction reveals supercell peaks due to long-range ordering among chains of corner-sharing FeO4 tetrahedra, which disappears on heating above 540 °C due to confined local rotations of tetrahedra. Our simulations show that these rotations are essentially isotropic, but are a precondition for the anisotropic motion that moves oxide ions into the tetrahedral layers from the octahedral layers, which we observe experimentally as a Lorentzian broadening of the quasielastic neutron scattering spectrum. This continual but incoherent movement of oxide ions in turn creates conduction pathways and activates long-range diffusion at the interface between layers, which appears to be largely isotropic in two dimensions, in contrast with previously proposed mechanisms that suggest diffusion occurs preferentially along the c axis.© 2013, American Chemical Society.

Description

Citation

Auckett, J.E., Studer, A.J., Pellegrini, E., Ollivier, J., Johnson, M.R., Schober, H., Miiller, W., & Ling, C.D. (2013). Combined experimental and computational study of oxide ion conduction dynamics in Sr2Fe2O5 brownmillerite. Chemistry of Materials, 25(15), 3080-3087. doi:10.1021/cm401278m

Collections

Endorsement

Review

Supplemented By

Referenced By