ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/4148

Title: A climate-isotope regression model with seasonally-varying and time-integrated relationships
Authors: Fischer, MJ
Baldini, LM
Keywords: Isotope
REGRESSION ANALYSIS
DELTA RAYS
CLIMATES
Verification
SCALARS
Issue Date: 1-Dec-2011
Publisher: Springer
Citation: Fischer, M. J., Baldini, L. M., (2011). A climate-isotope regression model with seasonally-varying and time-integrated relationships. CLIMATE DYNAMICS, 37(11-12), 2235-2251.
Abstract: This study investigates multivariable and multiscalar climate-delta(18)O relationships, through the use of statistical modeling and simulation. Three simulations, of increasing complexity, are used to generate time series of daily precipitation delta(18)O. The first simulation uses a simple local predictor (daily rainfall amount). The second simulation uses the same local predictor plus a larger-scale climate variable (a daily NAO index), and the third simulation uses the same local and non-local predictors, but with varying seasonal effect. Since these simulations all operate at the daily timescale, they can be used to investigate the climate-delta(18)O patterns that arise at daily-interannual timescales. These simulations show that (1) complex links exist between climate-delta(18)O relationships at different timescales, (2) the short-timescale relationships that underlie monthly predictor-delta(18)O relationships can be recovered using only monthly delta(18)O and daily predictor variables, (3) a comparison between the simulations and observational data can elucidate the physical processes at work. The regression models developed are then applied to a 2-year dataset of monthly precipitation delta(18)O from Dublin and compared with event-scale data from the same site, which illustrates that the methodology works, and that the third regression model explains about 55% of the variance in delta(18)O at this site. The methodology introduced here can potentially be applied to historic monthly delta(18)O data, to better understand how multiple-integrated influences at short timescales give rise to climate-delta(18)O patterns at monthly-interannual timescales. © 2011, Springer. The original publication is available at www.springerlink.com
URI: http://dx.doi.org/10.1007/s00382-011-1009-1
http://apo.ansto.gov.au/dspace/handle/10238/4148
ISSN: 0930-7575
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback