ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/4118

Title: Competition between Dewetting and Cross-Linking in Poly(N-vinylpyrrolidone)/Polystyrene Bilayer Films
Authors: Telford, AM
Thickett, SC
James, M
Neto, C
Keywords: POLYSTYRENE
Thin Films
MOLECULAR WEIGHT
Copolymers
RUPTURES
DYNAMICS
Issue Date: 6-Dec-2011
Publisher: American Chemical Society
Citation: Telford, A.M., Thickett, S.C., James, M., Neto, C., (2011). Competition between Dewetting and Cross-Linking in Poly(N-vinylpyrrolidone)/Polystyrene Bilayer Films. Langmuir, 27(23), 14207-14217.
Abstract: We investigated the dewetting of metastable poly(N-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. ACS Appl. Mater. Interfaces2010, 2, 2399?2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems.© 2011, American Chemical Society
URI: http;//dx.doi.org/10.1021/la2029577
http://apo.ansto.gov.au/dspace/handle/10238/4118
ISSN: 0743-7463
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback