ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/3923

Title: Dynamic Solubility Limits in Nanosized Olivine LiFePO(4)
Authors: Wagemaker, M
Singh, DP
Borghols, WJH
Lafont, U
Haverkate, L
Peterson, VK
Mulder, FM
Keywords: Olivine
Strains
Lithium
Solubility
Hybridization
Thermodynamics
Issue Date: 6-Jul-2011
Publisher: American Chemical Society
Citation: Wagemaker, M., Singh, D.P., Borghols, W.J.H., Lafont, U., Haverkate, L., Peterson, V.K., Mulder, F.M. (2011). Dynamic Solubility Limits in Nanosized Olivine LiFePO(4). Journal of the American Chemical Society, 133(26), 10222-10228.
Abstract: Because of its stability, nanosized olivine LiFePO(4) opens the door toward high-power Li-ion battery technology for large-scale applications as required for plug-in hybrid vehicles. Here, we reveal that the thermodynamics of first-order phase transitions in nanoinsertion materials is distinctly different from bulk materials as demonstrated by the decreasing miscibility gap that appears to be strongly dependent on the overall composition in LiFePO(4). In contrast to our common thermodynamic knowledge, that dictates solubility limits to be independent of the overall composition, combined neutron and X-ray diffraction reveals strongly varying solubility limits below particle sizes of 35 nm. A rationale is found based on modeling of the diffuse interface. Size confinement of the lithium concentration gradient, which exists at the phase boundary, competes with the in bulk energetically favorable compositions. Consequently, temperature and size diagrams of nanomaterials require complete reconsideration, being strongly dependent on the overall composition. This is vital knowledge for the future nanoarchitecturing of superior energy storage devices as the performance will heavily depend on the disclosed nanoionic properties. © 2011, American Chemical Society
URI: http://dx.doi.org/10.1021/ja2026213
http://apo.ansto.gov.au/dspace/handle/10238/3923
ISSN: 0002-7863
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback