ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/3209

Title: Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: combined in situ neutron diffraction and acoustic emission.
Authors: Muransky, O
Barnett, MR
Carr, DG
Vogel, SC
Oliver, EC
Keywords: Neutron Diffraction
Acoustic Emission Testing
Magnesium
Deformation
Twinning
Nucleation
Issue Date: Mar-2010
Publisher: Elsevier
Citation: Muransky, O., Barnett, M. R., Carr, D. G., Vogel, S. C., & Oliver, E. C. (2010). Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: combined in situ neutron diffraction and acoustic emission. Acta Materialia, 58(5), 1503-1517.
Abstract: Neutron diffraction and acoustic emission were used in a single in situ experiment in order to study the deformation twinning of two ZM20 Mg alloys with significantly different grain sizes at room temperature. The combination of these two techniques facilitates the distinction between twin nucleation and twin growth. It is shown that yielding and immediate post-yielding plasticity in compression along the extrusion direction is governed primarily by twin nucleation, whereas plasticity at higher strains is presumably governed by twin growth and dislocation slip. It is further shown that, in the fine-grained alloy, collaborative twin nucleation in many grains dominates yielding, whereas twin nucleation in the coarse-grained alloy is progressive and occurs over a larger strain range. In addition, it is shown that, despite twin nucleation stresses increasing with decreasing grain size, roughly the same overall volume fraction of twins is formed in both fine and coarse parent grains. This confirms the difficulty of the alternative deformation modes and suggests a negligible suppressive effect of grain size on twinning in the case of the strongly textured fine-grained alloy. The current results also show that twins in the coarse-grained alloy are born less relaxed with respect to surrounding polycrystalline aggregate than those in the fine-grained alloy. This is believed to lead to lower reversal stresses acting on twin grains in the coarse-grained alloy upon unloading and thus to less untwinning and thus to a smaller pseudoelastic-like hysteresis. © 2010, Elsevier Ltd.
URI: http://dx.doi.org/10.1016/j.actamat.2009.10.057
http://apo.ansto.gov.au/dspace/handle/10238/3209
ISSN: 1359-6454
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback