In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy

No Thumbnail Available
Date
2009-12-01
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Abstract
Hot-compression tests were conducted in a high-energy synchrotron x-ray beam to study in situ and in real time microstructural changes in the bulk of a beta-solidifying titanium aluminide alloy. The occupancy and spottiness of the diffraction rings have been evaluated in order to access grain growth and refinement, orientation relationships, subgrain formation, dynamic recovery, and dynamic recrystallization, as well as phase transformations. This method has been applied to an alloy consisting of two coexisting phases at high temperature and it was found that the bcc beta-phase recrystallizes dynamically, much faster than the hcp alpha-phase, which deforms predominantly through crystallographic slip underpinned by a dynamic recovery process with only a small component of dynamic recrystallization. The two phases deform to a very large extent independently from each other. The rapid recrystallization dynamics of the beta-phase combined with the easy and isotropic slip characteristics of the bcc structure explain the excellent deformation behavior of the material, while the presence of two phases effectively suppresses grain growth. © 2009, American Institute of Physics
Description
Keywords
X-ray diffraction, Phase transformations, Alloys, Synchrotron radiation, Grain refinement, Compressibility
Citation
Liss, K. D., Schmoelzer, T., Yan, K., Reid, M., Peel, M., & Dippenaar, R., & Clemens, H. (2009). In situ study of dynamic recrystallization and hot deformation behavior of a multiphase titanium aluminide alloy. Journal of Applied Physics, 106(11), 6. doi:/10.1063/1.3266177
Collections