Experimental validation of proton transverse relaxivity models for superparamagnetic nanoparticle MRI contrast agents.
No Thumbnail Available
Date
2010-01-22
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Physics
Abstract
Analytical models of proton transverse relaxation rate enhancement by magnetic nanoparticles were tested by making measurements on model experimental systems in a field of 1.4 T. Proton relaxivities were measured for five aqueous suspensions of iron oxide (maghemite) nanoparticles with nominal mean particle sizes of 6, 8, 10, 11, and 13 nm. Proton relaxivity increased with mean particle size ranging from 13 s(-1) mM Fe-1 for the 6 nm sample, up to 254 s(-1) mM Fe-1 for the 13 nm sample. A strong correlation between the measured and predicted values of the relaxivity was observed, with the predicted values being consistently higher than the measured values. The results indicate that the models give a reasonable agreement with experimental results and hence can be used as the basis for the design of new magnetic resonance imaging contrast and labelling agents. © 2010, Institute of Physics
Description
Keywords
Magnetic resonance, Transverse momentum, Relaxation, Iron oxides, Protons, NMR imaging
Citation
Carroll, M. R. J., Woodward, R. C., House, M. J., Teoh, W. Y., Amal, R., & Hanley, T. L., et al. (2010). Experimental validation of proton transverse relaxivity models for superparamagnetic nanoparticle MRI contrast agents. Nanotechnology, 21(3), 7. doi:10.1088/0957-4484/21/3/035103