Repository logo


Structure of dopamine induced α-synuclein oligomers

Abstract

Inclusions of aggregated α-synuclein (α-syn) in dopaminergic neurons are a characteristic histological marker of Parkinson’s disease (PD). In vitro, α-syn in the presence of dopamine (DA) at physiological pH forms SDS-resistant non-amyloidogenic oligomers. We used a combination of biophysical techniques, including sedimentation velocity analysis, small angle X-ray scattering (SAXS) and circular dichroism spectroscopy to study the characteristics of α-syn oligomers formed in the presence of DA. Our SAXS data show that the trimers formed by the action of DA on α-syn consist of overlapping worm-like monomers, with no end-to-end associations. This lack of structure contrasts with the well-established, extensive β-sheet structure of the amyloid fibril form of the protein and its pre-fibrillar oligomers. We propose on the basis of these and earlier data that oxidation of the four methionine residues at the C- and N-terminal ends of α-syn molecules prevents their end-to-end association and stabilises oligomers formed by cross linking with DA-quinone/DA-melanin, which are formed as a result of the redox process, thus inhibiting formation of the β-sheet structure found in other pre-fibrillar forms of α-syn. © 2010, Springer.

Description

Citation

Rekas, A., Knott, R. B., Sokolova, A., Barnham, K. J., Perez, K. A., Masters, C. L., Drew, S. C., Cappai, R., Curtain, C. C., & Pham, C. L. L. (2010). Structure of dopamine induced α-synuclein oligomers. European Biophysics Journal, 39(10), 1407-1419. doi:10.1007/s00249-010-0595-x

Collections

Endorsement

Review

Supplemented By

Referenced By