ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/2071

Title: Time-resolved x-ray diffraction study of laser-induced shock and acoustic waves in single crystalline silicon.
Authors: Liss, KD
d'Almeida, T
Kaiser, M
Hock, R
Magerl, A
Eloy, JF
Keywords: Silicon
X-Ray Diffraction
Time Resolution
Shock Waves
Lasers
Phonons
Issue Date: 15-Aug-2009
Publisher: American Institute of Physics
Citation: Liss, K. D., d'Almeida, T., Kaiser, M., Hock, R., Magerl, A., & Eloy, J. F. (2009). Time-resolved x-ray diffraction study of laser-induced shock and acoustic waves in single crystalline silicon. Journal of Applied Physics, 106(4), 044914.
Abstract: A rod of single crystalline silicon has been subjected to high-power nanosecond laser pulses inducing ultrasonic and shock waves traveling into the bulk of the material. Stroboscopic time-resolved high-energy x-ray diffraction measurements were carried out in situ to probe for strain states in the bulk of the sample. First, a supersonic shock front is observed which moves faster than the longitudinal acoustic phonons. Following the shock front, a much slower bunch of waves travels along the crystal. The x-ray diffraction records obtained in different configurations reflect a strong dependence of the wave propagation on the sample geometry. These results offer an experimental approach for the investigation of coherent phonons, structural phase transformations, plastic deformations induced during shock peening, and for the development of x-ray free-electron-laser optics. © 2009, American Institute of Physics
URI: http://dx.doi.org/10.1063/1.3204968
http://apo.ansto.gov.au/dspace/handle/10238/2071
ISSN: 0021-8979
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback