Repository logo


Surface force confinement cell for neutron reflectometry studies of complex fluids under nanoconfinement

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics

Abstract

In this paper, we describe the construction of a new neutron surface force confinement cell (NSFCC). The NSFCC is equipped with hydraulically powered in situ, temporally stable, force control system for simultaneous neutron reflectometry studies of nanoconfined complex fluid systems. Test measurements with deuterated toluene confined between two opposing diblock copolymer (polystyrene+poly 2-vinylpyridine) coated quartz substrates demonstrate the capabilities of the NSFCC. With increasing hydraulically applied force, a series of well-defined decreasing separations were observed from neutron reflectivity measurements. No noticeable changes in the hydraulic pressure used for controlling the surface separation were observed during the measurements, demonstrating the high stability of the apparatus. This newly designed NSFCC introduces a higher level of control for studies of confinement and consequent finite size effects on nanoscale structure in a variety of complex fluid and soft condensed matter systems. © 2008, American Institute of Physics

Description

Citation

Cho, J. H. J., Smith, G. S., Hamilton, W. A., Mulder, D. J., Kuhl, T. L., & Mays, J. (2008). Surface force confinement cell for neutron reflectometry studies of complex fluids under nanoconfinement. Review of Scientific Instruments, 79(10), 103908. doi:10.1063/1.3005483

Collections

Endorsement

Review

Supplemented By

Referenced By