ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item:

Title: Surface force confinement cell for neutron reflectometry studies of complex fluids under nanoconfinement.
Authors: Cho, JHJ
Smith, GS
Hamilton, WA
Mulder, DJ
Kuhl, TL
Mays, J
Keywords: Neutron Diffraction
Issue Date: Oct-2008
Publisher: American Institute of Physics
Citation: Cho, J. H. J., Smith, G. S., Hamilton, W. A., Mulder, D. J., Kuhl, T. L., & Mays, J. (2008). Surface force confinement cell for neutron reflectometry studies of complex fluids under nanoconfinement. Review of Scientific Instruments, 79(10), 7.
Abstract: In this paper, we describe the construction of a new neutron surface force confinement cell (NSFCC). The NSFCC is equipped with hydraulically powered in situ, temporally stable, force control system for simultaneous neutron reflectometry studies of nanoconfined complex fluid systems. Test measurements with deuterated toluene confined between two opposing diblock copolymer (polystyrene+poly 2-vinylpyridine) coated quartz substrates demonstrate the capabilities of the NSFCC. With increasing hydraulically applied force, a series of well-defined decreasing separations were observed from neutron reflectivity measurements. No noticeable changes in the hydraulic pressure used for controlling the surface separation were observed during the measurements, demonstrating the high stability of the apparatus. This newly designed NSFCC introduces a higher level of control for studies of confinement and consequent finite size effects on nanoscale structure in a variety of complex fluid and soft condensed matter systems. © 2008, American Institute of Physics
ISSN: 0034-6748
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback