ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/1726

Title: Low-temperature inflection observed in neutron scattering measurements of proteins is due to methyl rotation: direct evidence using isotope labeling and molecular dynamics simulations.
Authors: Wood, K
Tobias, DJ
Kessler, B
Gabel, F
Oesterhelt, D
Mulder, FAA
Zaccai, G
Weik, M
Keywords: Molecular Dynamics Method
Proteins
Spectrometers
Scattering
Rotation
Temperature Range
Issue Date: 14-Apr-2010
Publisher: American Chemical Society
Citation: Wood, K., Tobias, D. J., Kessler, B., Gabel, F., Oesterhelt, D., Mulder, F. A. A., et al. (2010). Low-temperature inflection observed in neutron scattering measurements of proteins is due to methyl rotation: direct evidence using isotope labeling and molecular dynamics simulations. Journal of the American Chemical Society, 132(14), 4990-4991.
Abstract: There is increasing interest in the contribution of methyl groups to the overall dynamics measured by neutron scattering experiments of proteins. In particular an inflection observed in atomic mean square displacements measured as a function of temperature on high resolution spectrometers (~1 μeV) was explained by the onset of methyl group rotations. By specifically labeling a non-methyl-containing side-chain in a native protein system, the purple membrane, and performing neutron scattering measurements, we here provide direct experimental evidence that the observed inflection is indeed due to methyl group rotations. Molecular dynamics simulations reproduce the experimental data, and their analysis suggests that the apparent transition is due to methyl group rotation entering the finite instrumental resolution of the spectrometer. Methyl group correlation times measured by solid state NMR in the purple membrane, taken from previous work, support the interpretation. © 2010, American Chemical Society
URI: http://dx.doi.org/10.1021/ja910502g
http://apo.ansto.gov.au/dspace/handle/10238/1726
ISSN: 0002-7863
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback