ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/1717

Title: Photochromic spirooxazines functionalized with oligomers: investigation of core-oligomer interactions and photomerocyanine isomer interconversion using NMR spectroscopy and DFT.
Authors: Yee, LH
Hanley, T
Evans, RA
Davis, TP
Ball, GE
Keywords: Photochromic Materials
Nuclear Magnetic Resonance
Isomers
Peaks
Irradiation
Isomerization
Issue Date: 7-May-2010
Publisher: American Chemical Society
Citation: Yee, L. H., Hanley, T., Evans, R. A., Davis, T. P., & Ball, G. E. (2010). Photochromic spirooxazines functionalized with oligomers: investigation of core-oligomer interactions and photomerocyanine isomer interconversion using NMR spectroscopy and DFT. Journal of Organic Chemistry, 75(9), 2851-2860.
Abstract: Photochromic spirooxazines functionalized with poly(ethylene glycol) (PEG) and poly(dimethylsiloxane) (PDMS) oligomers were monitored using NMR spectroscopy at temperatures between 193 and 233 K before and after in situ exposure to UV irradiation. NOESY and ROESY experiments reveal the TTC (trans−s-trans−cis) isomer to be the dominant merocyanine isomer formed on photolysis, with some CTC (cis−s-trans−cis) isomer also present. Significant ROE cross peaks were observed between the “bulk” of the oligomeric units and protons across the entire photochromic core of the molecule, the intensity of these cross peaks suggesting that the interaction of the oligomer side chain and core of the molecule is significantly enhanced by the permanent attachment, especially with the PDMS side chain. The 2D NMR spectra indicate that there is exchange between the TTC and CTC isomers even at 193 K. This isomerization of the parent spirooxazine compounds, lacking the oligomeric side chains, was found to be acid-catalyzed, and DFT calculations support the strong possibility that it is the protonated merocyanine form that undergoes the facile isomerization process. Interconversion of the different merocyanine isomers is suggested to be fast on the NMR time scale under many experimental conditions, precluding the observation of different isomers using NMR spectroscopy at room temperature. © 2010, American Chemical Society
URI: http://dx.doi.org/10.1021/jo100081g
http://apo.ansto.gov.au/dspace/handle/10238/1717
ISSN: 0022-3263
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback