ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/1391

Title: Possible evidence for wet Heinrich phases in tropical NE Australia: the Lynch's Crater deposit.
Authors: Muller, J
Kylander, M
Wust, RAJ
Weiss, D
Martinez-Cortizas, A
LeGrande, AN
Jennerjahn, T
Behling, H
Anderson, WT
Jacobsen, GE
Keywords: Climates
Northern Hemisphere
Precipitation
Tropical Regions
Australia
Paleoclimatology
Issue Date: Mar-2008
Publisher: Elsevier
Citation: Muller, J., Kylander, M., Wust, R. A. J., Weiss, D., Martinez-Cortizas, A., LeGrande, A. N., et al. (2008). Possible evidence for wet Heinrich phases in tropical NE Australia: the Lynch's Crater deposit. Quaternary Science Reviews, 27(5-6), 468-475.
Abstract: Unarguably, one of the most significant paleoclimatological discoveries of the last two decades has been that of abrupt climate events (Dansgaard-Oeschger cycles and Heinrich events). Most evidence for these events has originated from the high-latitude Northern Hemisphere.. with few records documenting the response of the low latitude Southern Hemisphere. Here we present new data from Lynch's Crater, a unique terrestrial record from NE-Australia that may show evidence for southward propagations of the Intertropical Convergence Zone (ITCZ) during abrupt climate perturbations as a result of alteration of the low latitude air masses. Proxies for precipitation/wetness indicate enhanced rainfall in the region during Heinrich events (H events 1-3) and the 8.2 ka Northern Hemisphere cold event. A fully coupled atmosphere/ocean climate model simulating a 1 Sv freshwater influx to the North Atlantic Ocean produces a scenario which agrees with the climate changes shown by the Lynch's Crater record. The model shows precipitation anomalies that include a southward migration of the ITCZ and a zonal shift in mid-latitude storm tracks over the Southern Hemisphere equatorial region. These data indicate large-scale shifts of the austral summer ITCZ position that is known to control monsoonal precipitation in NE Australia. This terrestrial record from Australia may demonstrate the involvement of the tropical western Pacific Ocean in ITCZ migrations during abrupt climate events of the last glacial period. Defining such past migrations offers insight into the importance and role of the equatorial region in global climate dynamics. © 2007, Elsevier Ltd.
URI: http://dx.doi.org/10.1016/j.quascirev.2007.11.006
http://apo.ansto.gov.au/dspace/handle/10238/1391
ISSN: 0277-3791
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback