ANSTO Publications Online >
Journal Publications >
Journal Articles >

Please use this identifier to cite or link to this item: http://apo.ansto.gov.au/dspace/handle/10238/1369

Title: Silicon (100) electrodes resistant to oxidation in aqueous solutions: an unexpected benefit of surface acetylene moieties.
Authors: Ciampi, S
Eggers, PK
Le Saux, G
James, M
Harper, JB
Gooding, JJ
Keywords: Silicon
Oxidation
Aqueous Solutions
Acetylene
Ferrocene
Electrodes
Issue Date: 17-Feb-2009
Publisher: American Chemical Society
Citation: Ciampi, S., Eggers, P. K., Le Saux, G., James, M., Harper, J. B., & Gooding, J. J. (2009). Silicon (100) electrodes resistant to oxidation in aqueous solutions: an unexpected benefit of surface acetylene moieties. Langmuir, 25(4), 2530-2539.
Abstract: Here we report on the functionalization of alkyne-terminated alkyl monolayers on highly doped Si(100) using click" reactions to immobilize ferrocene derivatives. The reaction of hydrogen-terminated silicon surfaces with a diyne species was shown to afford very robust functional surfaces where the oxidation of the underlying substrate was negligible. Detailed characterization using X-ray photoelectron spectroscopy, X-ray reflectometry, and cyclic voltammetry demonstrated that the surface acetylenes had reacted in moderate yield to give surfaces exposing ferrocene moieties. Upon extensive exposure of the redox-active architecture to oxidative environments during preparative and characterization steps, no evidence of SiOx contaminants was shown for derivatized SAMs prepared from single-component 1,8-nonadiyne, fully acetylenylated, monolayers. An analysis of the redox behavior of the prepared Si(100) electrodes based on relevant parameters such as peak splitting and position and shape of the reduction/oxidation waves depicted a well-behaved redox architecture whose spectroscopic and electrochemical properties were not significantly altered even after prolonged cycling in aqueous media between -100 and 800 mV versus AglAgCl. The reported strategy represents an experimentally simple approach for the preparation of silicon-based electrodes where, in addition to close-to-ideal redox behavior, remarkable electrode stability can be achieved. Both the presence of a distal alkyne moiety and temperatures of formation above 100 degrees C were required to achieve this surface stabilization. © 2009, American Chemical Society
URI: http://dx.doi.org/10.1021/la803710d
http://apo.ansto.gov.au/dspace/handle/10238/1369
ISSN: 0743-7463
Appears in Collections:Journal Articles

Files in This Item:

There are no files associated with this item.

Items in APO are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback