Please use this identifier to cite or link to this item: https://apo.ansto.gov.au/dspace/handle/10238/9587
Title: Constraining groundwater flow, residence ties, interaquifer mixing and aquifer properties using environmental isotopes in the southeast Murray Basin, Australia
Authors: Cartwright, I
Weaver, TR
Cendón, DI
Fifield, LK
Tweed, SO
Petrides, B
Swane, IC
Keywords: Ground water
Aquifers
Australia
Isotopes
Geochemistry
Methanogenic bacteria
Watersheds
Silicates
Salinity
Saline aquifers
Issue Date: 1-Sep-2012
Publisher: Elsevier B.V.
Citation: Cartwright, I., Weaver, T. R., Cendón, D. I., Fifield, L. K., Tweed, S. O., Petrides, B., & Swane, I. (2012). Constraining groundwater flow, residence times, inter-aquifer mixing, and aquifer properties using environmental isotopes in the southeast Murray Basin, Australia. Applied Geochemistry, 27(9), 1698-1709. doi:10.1016/j.apgeochem.2012.02.006
Abstract: Environmental isotopes (particularly δ18O, δ2H, and δ13C values, 87Sr/86Sr ratios, and a14C) constrain geochemical processes, recharge distribution and rates, and inter-aquifer mixing in the Riverine Province of the southern Murray Basin. Due to methanogenesis and the variable δ13C values of matrix calcite, δ13C values are highly variable and it is difficult to correct 14C ages using δ13C values alone. In catchments where δ13C values, 87Sr/86Sr ratios, and major ion geochemistry yield similar a14C corrections, ∼15% of the C is derived from the aquifer matrix in the silicate-dominated aquifers, and this value may be used to correct ages in other catchments. Most groundwater has a14C above background (∼2 pMC) implying that residence times are <30 ka. Catchments containing saline groundwater generally record older 14C ages compared to catchments that contain lower salinity groundwater, which is consistent with evapotranspiration being the major hydrogeochemical process. However, some low salinity groundwater in the west of the Riverine Province has residence times of >30 ka probably resulting from episodic recharge during infrequent high rainfall episodes. Mixing between shallower and deeper groundwater results in 14C ages being poorly correlated with distance from the basin margins in many catchments; however, groundwater flow in palaeovalleys where the deeper Calivil–Renmark Formation is coarser grained and has high hydraulic conductivities is considerably more simple with little inter-aquifer mixing. Despite the range of ages, δ18O and δ2H values of groundwater in the Riverine Province do not preserve a record of changing climate; this is probably due to the absence of extreme climatic variations, such as glaciations, and the fact that the area is not significantly impacted by monsoonal systems. © 2020 Elsevier B.V
Gov't Doc #: 9665
URI: https://doi.org/10.1016/j.apgeochem.2012.02.006
http://apo.ansto.gov.au/dspace/handle/10238/9587
ISSN: 0883-2927
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.