Please use this identifier to cite or link to this item: https://apo.ansto.gov.au/dspace/handle/10238/7799
Title: Thermal conductivity and energetic recoils in UO2 using a many-body potential model
Authors: Qin, MJ
Cooper, MWD
Kuo, EY
Rushton, MJD
Grimes, RW
Lumpkin, GR
Middleburgh, SC
Keywords: Molecules
Nuclear fuels
Amorphous state
Thermal conductivity
Uranium dioxide
Crystal lattices
Issue Date: 14-Nov-2014
Publisher: IOP Science
Citation: Qin, M. J., Cooper, M. W. D., Kuo, E. Y., Rushton, M. J. D., Grimes, R. W., Lumpkin, G. R., & Middleburgh, S. C. (2014). Thermal conductivity and energetic recoils in UO2 using a many-body potential model. Journal of Physics: Condensed Matter, 26(49), 495401. doi:10.1088/0953-8984/26/49/495401
Abstract: Classical molecular dynamics simulations have been performed on uranium dioxide (UO2) employing a recently developed many-body potential model. Thermal conductivities are computed for a defect free UO2 lattice and a radiation-damaged, defect containing lattice at 300 K, 1000K and 1500 K. Defects significantly degrade the thermal conductivity of UO2 as does the presence of amorphous UO2, which has a largely temperature independent thermal conductivity of ∼1.4Wm−1 K−1. The model yields a pre-melting superionic transition temperature at 2600 K, very close to the experimental value and the mechanical melting temperature of 3600 K, slightly lower than those generated with other empirical potentials. The average threshold displacement energy was calculated to be 37 eV. Although the spatial extent of a 1 keV U cascade is very similar to those generated with other empirical potentials and the number of Frenkel pairs generated is close to that from the Basak potential, the vacancy and interstitial cluster distribution is different. © 2014, IOP Publishing Ltd.
Gov't Doc #: 7361
URI: http://dx.doi.org/10.1088/0953-8984/26/49/495401
http://apo.ansto.gov.au/dspace/handle/10238/7799
ISSN: 0953-8984
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.