Structure of the Li4Ti5O12 anode during charge-discharge cycling

Thumbnail Image
Journal Title
Journal ISSN
Volume Title
Cambridge University Press
The structural evolution of the “zero-strain” Li4Ti5O12 anode within a functioning Li-ion battery during charge–discharge cycling was studied using in situ neutron powder-diffraction, allowing correlation of the anode structure to the measured charge–discharge profile. While the overall lattice response controls the “zero-strain” property, the oxygen atom is the only variable in the atomic structure and responds to the oxidation state of the titanium, resulting in distortion of the TiO6 octahedron and contributing to the anode's stability upon lithiation/delithiation. Interestingly, the trend of the octahedral distortion on charge–discharge does not reflect that of the lattice parameter, with the latter thought to be influenced by the interplay of lithium location and quantity. Here we report the details of the TiO6 octahedral distortion in terms of the O–Ti–O bond angle that ranges from 83.7(3)° to 85.4(5)°. © 2014, International Centre for Diffraction Data.
Neutron diffraction, Lattice parameters, Electric batteries, Titanium, Oxygen, Lithium
Pang, W. K., Peterson, V. K., Sharma, N., Shiu, J.-J., & Wu, S.-h. (2014). Structure of the Li4Ti5O12 anode during charge-discharge cycling. Paper presented to the 2014 Australian X-Ray Analytical Association (AXAA) Conference and Exhibition, February 9-13, 2014, Pan Pacific Hotel, Perth, WA. In Powder Diffraction, 29(S1), S59-S63. doi: doi:10.1017/S0885715614001067