Please use this identifier to cite or link to this item:
Title: Equatorial Pacific coral geochemical records show recent weakening of the Walker Circulation
Authors: Carilli, JE
McGregor, HV
Gaudry, JJ
Donner, SD
Gagan, MK
Stevenson, S
Wong, HKY
Fink, D
Keywords: Seas
Southern oscillation
Issue Date: 10-Nov-2014
Publisher: American Geophysical Union
Citation: Carilli, J. E., McGregor, H. V., Gaudry, J. J., Donner, S. D., Gagan, M. K., Stevenson, S., Wong, H. & Fink, D. (2014). Equatorial Pacific coral geochemical records show recent weakening of the Walker Circulation. Paleoceanography, 29(11), 1031-1045. doi:10.1002/2014pa002683
Abstract: Equatorial Pacific ocean-atmosphere interactions affect climate globally, and a key component of the coupled system is the Walker Circulation, which is driven by sea surface temperature (SST) gradients across the equatorial Pacific. There is conflicting evidence as to whether the SST gradient and Walker Circulation have strengthened or weakened over the late twentieth century. We present new records of SST and sea surface salinity (SSS) spanning 1959–2010 based on paired measurements of Sr/Ca and δ18O in a massive Porites coral from Butaritari atoll in the Gilbert Islands, Republic of Kiribati, in the central western equatorial Pacific. The records show 2–7 year variability correlated with the El Niño–Southern Oscillation (ENSO) and corresponding shifts in the extent of the Indo-Pacific Warm Pool, and decadal-scale signals related to the Pacific Decadal Oscillation and the Pacific Warm Pool Index. In addition, the Butaritari coral records reveal a small but significant increase in SST (0.39°C) from 1959 to 2010 with no accompanying change in SSS, a trend that persists even when ENSO variability is removed. In contrast, larger increases in SST and SSS are evident in coral records from the equatorial Pacific Line Islands, located east of Butaritari. Taken together, the equatorial Pacific coral records suggest an overall reduction in the east-west SST and SSS gradient over the last several decades, and a recent weakening of the Walker Circulation. © 2014, American Geophysical Union. All Rights Reserved.
Gov't Doc #: 6732
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
2014PA002683.pdf2.32 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.