Please use this identifier to cite or link to this item:
Title: Large strain deformation of bimodal layer thickness Cu/Nb nanolamellar composites
Authors: Wynn, TA
Bhattacharyya, D
Hammon, DL
Misra, A
Mara, NA
Keywords: Electron microscopy
Stainless steels
Issue Date: 1-Mar-2013
Publisher: Elsevier
Citation: Wynn, T. A., Bhattacharyya, D., Hammon, D. L., Misra, A., & Mara, N. A. (2013). Large strain deformation of bimodal layer thickness Cu/Nb nanolamellar composites. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 564, 213-217. doi:10.1016/j.msea.2012.11.114
Abstract: Nanolayered composites have garnered much attention due to their ability to withstand deformation to large strains, shock deformation, and irradiation induced microstructural damage. These behaviors have been attributed to high densities of bimetal interfacial content. Although they exhibit yield strengths approaching theoretical limits, multilayered materials with layer thicknesses less than 10 nm have shown limited ductility in rolling. In this study, bimodal 4 nm/40 nm Cu/Nb multilayers are rolled to 30% thickness reduction without the onset of shear instability. The stacking order used allows focus to be drawn specifically to the ductility by the boundary crossing mechanism exhibited in multilayered materials with layer thicknesses below 10 nm. Through the geometric constraint offered by alternating 4 nm and 40 nm layer thickness modes, the onset of localized shear is avoided and the 4 nm layers can be rolled to large strains. © 2015, Elsevier B.V.
Gov't Doc #: 6228
ISSN: 0921-5093
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.