Please use this identifier to cite or link to this item: https://apo.ansto.gov.au/dspace/handle/10238/6318
Title: The stability of alloying additions in zirconium
Authors: Lumley, SC
Murphy, ST
Burr, PA
Grimes, RW
Chard-Tuckey, PR
Wenman, MR
Keywords: Intermetallic compounds
Laves phases
Atomic radii
Intermetalllic compounds
Tin
Zirconium
Issue Date: 1-Jun-2013
Publisher: Elsevier
Citation: Lumley, S. C., Murphy, S. T., Burr, P. A., Grimes, R. W., Chard-Tuckey, P. R., & Wenman, M. R. (2013). The stability of alloying additions in Zirconium. Journal of Nuclear Materials, 437(1-3), 122-129. doi:10.1016/j.jnucmat.2013.01.335
Abstract: The interactions of Cr, Fe, Nb, Ni, Sn, V and Y with Zr are simulated using density functional theory. Thermodynamic stabilities of various different Zr based intermetallic compounds, including multiple Laves phase structures and solutions of alloying additions in both α and β -Zr were investigated. The thermodynamic driving forces in this system can be correlated with trends in atomic radii and the relative electronegativities of the different species. Formation energies of Fe, Ni and Sn based intermetallic compounds were found to be negative, and the Zr2FeZr2Fe and Zr2NiZr2Ni intermetallics were metastable. Most elements displayed negative energies of solution in β-Zr but positive energies in the α-phase, with the exception of Sn (which was negative for both) and Y (which was positive for both). Solutions formed from intermetallics showed a similar trend. © 2013, Elsevier B.V.
Gov't Doc #: 6150
URI: http://dx.doi.org/10.1016/j.jnucmat.2013.01.335
http://apo.ansto.gov.au/dspace/handle/10238/6318
ISSN: 0022-3115
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.