Please use this identifier to cite or link to this item: https://apo.ansto.gov.au/dspace/handle/10238/370
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPantelis, Gen_AU
dc.date.accessioned2007-11-22T04:20:12Zen_AU
dc.date.accessioned2010-04-30T04:30:07Z-
dc.date.available2007-11-22T04:20:12Zen_AU
dc.date.available2010-04-30T04:30:07Z-
dc.date.issued1995-05en_AU
dc.identifier.citationPamtelis, G. (1995). Derivation of a macroscale formulation for a class of nonlinear partial differential equations (ANSTO/E722). Lucas Heights, NSW: Australian Atomic Energy Commission.-
dc.identifier.govdoc201-
dc.identifier.isbn0642599602en_AU
dc.identifier.issn10307745en_AU
dc.identifier.otherANSTO-E-722en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/370en_AU
dc.description.abstractA macroscale formulation is constructed from a system of partial differential equations which govern the microscale dependent variables. The construction is based upon the requirement that the solutions of the macroscale partial differential equations satisfy in some approximate sense the system of partial differential equations associated with the microscale. These results are restricted to the class of nonlinear partial differential equations which can be expressed as polynomials of the dependent variables and their partial derivatives up to second order. A linear approximation of transformations of second order contact manifolds is employed.en_AU
dc.language.isoen_auen_AU
dc.publisherAustralian Nuclear Science and Technology Organisationen_AU
dc.subjectDifferential equations-
dc.subjectFluid flow-
dc.subjectSimulation-
dc.subjectPorous materials-
dc.titleDerivation of a macroscale formulation for a class of nonlinear partial differential equations.en_AU
Appears in Collections:Scientific and Technical Reports

Files in This Item:
File Description SizeFormat 
ANSTO-E-722.pdf883.37 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.