Please use this identifier to cite or link to this item: https://apo.ansto.gov.au/dspace/handle/10238/2230
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFoster, LJRen_AU
dc.contributor.authorRussell, RAen_AU
dc.contributor.authorSanguanchaipaiwong, Ven_AU
dc.contributor.authorStone, DJMen_AU
dc.contributor.authorHook, JMen_AU
dc.contributor.authorHolden, PJen_AU
dc.date.accessioned2009-11-08T23:14:05Zen_AU
dc.date.accessioned2010-04-30T05:01:43Z-
dc.date.available2009-11-08T23:14:05Zen_AU
dc.date.available2010-04-30T05:01:43Z-
dc.date.issued2006-04en_AU
dc.identifier.citationFoster, L. J. R., Russell, R. A., Sanguanchaipaiwong, V., Stone, D. J. M., Hook, J. M., & Holden, P. J. (2006). Biosynthesis and characterization of deuterated polyhydroxyoctanoate. Biomacromolecules, 7(4), 1344-1349. doi:10.1021/bm050969len_AU
dc.identifier.govdoc1100-
dc.identifier.issn1525-7797en_AU
dc.identifier.urihttp://dx.doi.org/10.1021/bm050969len_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/2230en_AU
dc.description.abstractThe synthesis of a polyhydroxyalkanoate with medium chain length alkyl substituents by Pseudomonas oleovorans was investigated using protonated and deuterated forms of octanoic acid in a minimal salts medium. Cultivation with deuterated octanoic acid resulted in a reduced rate of polymer accumulation compared to that with its protonated counterpart (107 and 207 mg of polymer L-1 of medium h-1 of cultivation, respectively). Nuclear magnetic resonance and gas chromatography coupled mass spectrometry of the derivatized polymer was used to establish the extent and distribution of deuterium in the biopolymer. A partially deuterated heteropolymer with 3-hydroxyoctanoic acid as the main constituent was produced. Deuteration is an important tool for contrast variation studies using neutron scattering, but predicates that the deuterated polymer is otherwise comparable in its physiochemical and material properties to its protonated counterpart. In studies reported here, the deuterated biopolymer exhibited an additional diffraction maximum at 7.55 Å and slight differences in its melting point (60 and 55 °C) and glass transition temperature (−39 and −36 °C) when compared to its protonated equivalent. While significant differences between the protonated and deuterated biopolymers were determined, our results support the use of this deuterated polyhydroxyalkanoate in its application in investigations using analytical neutron scattering techniques. © 2006, American Chemical Societyen_AU
dc.language.isoenen_AU
dc.publisherAmerican Chemical Societyen_AU
dc.subjectBiosynthesisen_AU
dc.subjectDeuterationen_AU
dc.subjectOctanoic aciden_AU
dc.subjectCultivationen_AU
dc.subjectPolymersen_AU
dc.subjectScatteringen_AU
dc.titleBiosynthesis and characterization of deuterated polyhydroxyoctanoate.en_AU
dc.typeJournal Articleen_AU
dc.date.statistics2006-04en_AU
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.