Please use this identifier to cite or link to this item: https://apo.ansto.gov.au/dspace/handle/10238/2156
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPayten, WM-
dc.contributor.authorDean, DW-
dc.contributor.authorSnowden, KU-
dc.date.accessioned2010-08-10T05:24:36Z-
dc.date.available2010-08-10T05:24:36Z-
dc.date.issued2009-07-26-
dc.identifier.citationPayten, W. M., Dean, D. W., & Snowden, K. U. (2009). Creep-fatigue prediction of low alloy ferritic steels using a strain energy based methodology. ASME 2009 Pressure Vessels and Piping Conference (PVP2009), 26th – 30th July 2009. Prague, Czech Republic: Hilton Prague. In Proceedings of the ASME Pressure Vessels and Piping Conference 2009 - Materials and Fabrication, Parts A and B, 6, 1403-1410(PVP2009-77208). doi:10.1115/PVP2009-77208en_AU
dc.identifier.govdoc2285-
dc.identifier.isbn9780791843697-
dc.identifier.issn0277-027X-
dc.identifier.urihttp://dx.doi.org/10.1115/PVP2009-77208en_AU
dc.identifier.urihttp://apo.ansto.gov.au/dspace/handle/10238/2156-
dc.description.abstractThe accumulation of creep-fatigue damage over time is the principal damage mechanism which will eventually lead to crack initiation in critical high temperature equipment. A model that calculates the creep damage under conditions of strain control has been developed that assumes on a macroscopic level that the energy dissipated in the material may be taken as a measure of the creep damage induced in the material. This then assumes that the creep damage is directly proportional to absorbed internal energy density. The model developed is derived from considerations of mechanistic cavity growth. The model makes use of already existing creep data and relatively easily determined fatigue data for estimation of life under non-steady state conditions. The predictions of the energy-density exhaustion approach are compared with the results of creep-fatigue tests on a low alloy ferritic steel 1/2Cr-1/2Mo-1/4V (CMV) and with creep-fatigue calculations using a number of current models. The predicted results of the energy-density model are found to have good correlation with the measured creep-fatigue lives.en_AU
dc.language.isoenen_AU
dc.publisherAmerican Society of Mechanical Engineers (ASME)en_AU
dc.subjectCreepen_AU
dc.subjectFatigueen_AU
dc.subjectFerritic steelsen_AU
dc.subjectStrainsen_AU
dc.subjectDamageen_AU
dc.subjectEnergy densityen_AU
dc.titleCreep-fatigue prediction of low alloy ferritic steels using a strain energy based methodologyen_AU
dc.typeConference Paperen_AU
dc.date.statistics2009-07-26-
Appears in Collections:Conference Publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.