Please use this identifier to cite or link to this item:
Title: Magnetic structure and spin dynamics of multiferroic system Co4Nb2O9
Authors: Deng, G
Cao, Y
Ren, W
Cao, S
Gauthier, N
Kenzelmann, M
Studer, AJ
Rule, KC
Gardner, JS
Davison, G
Imperia, P
McIntyre, GJ
Keywords: Spin
Antiferromagnetic materials
Crystal structure
Inelastic scattering
Spin waves
Issue Date: 1-Feb-2017
Publisher: Australian Institute of Physics
Citation: Deng, G., Cao. Y., Ren, W., Cao, S., Gauthier, N., Kenzelmann, M., Studer, A., Rule, K., Gardner, J. S., Davison, G., Imperia, P., & McIntyre, G. J. (2017). Magnetic structure and spin dynamics of multiferroic system Co4Nb2O9. Paper presented to the 41st Annual Condensed Matter and Materials Meeting, Charles Sturt University, Wagga Wagga, NSW, Australia, 31st January - 3rd February 2017, (p.34). Retrieved from:
Abstract: Co4Nb2O9, was recently reported to have large magneto-dielectric coupling effect under a certain magnetic field.[1,2] This compound has a corundum-type crystal structure of space group P-3c1 of ref. [3] and undergoes antiferromagnetic phase transition around 27 K. It was previously believed that the magnetic moments of Co2+ order into a collinear antiferromagnetic structure in which Co2+ spins order parallel to the c-direction and form ferromagnetic chains with antiparallel inter-chain coupling.[3] However, the recent study has shown that this magnetic structure model is incorrect.[4] In this study, we found that the Co2+ magnetic moments align in the ab plane with a non-collinear configuration. Using inelastic neutron scattering, we measured the spin wave excitation from its magnetic phase along (h00) and (00l). A magnetic model was proposed to explain the observed spin dynamical behavior. There are two inequivalent Co sites, which form spin chains in an alternative way along c axis. Each Co2+ moment couples with its two inequivalent neighbors on the same chain with ferromagnetic interactions. Co2+ moments from each site form a zig-zag hexagonal ring perpendicular to the c axis, where antiferromagnetic interactions dominate. On the basis of this model, the observed spin wave spectra can be well simulated by SpinW. [5]
Appears in Collections:Conference Publications

Files in This Item:
File Description SizeFormat 
Wagga_2017_Conference_Handbook.pdf11.3 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.