Please use this identifier to cite or link to this item:
Title: Residual stress study of Al/Al laminates processed by accumulative roll bonding
Authors: Su, L
Lu, C
Li, H
Luzin, V
Wang, H
Tieu, K
Keywords: Residual stresses
Neutron diffraction
Finite element method
Issue Date: 3-Jul-2016
Publisher: Materials Research Forum LLC
Citation: Su. L., Lu. C., Li, H., Luzin, V., Wang, H., & Tieu, K. (2016). Residual stress study of Al/Al laminates processed by accumulative roll bonding. Paper presented to the 10th International Conference on Residual Stresses (ICRS 10), Sydney, Australia, 3-7 July, 2016. In T. M. Holden, T. M., O. Muránsky, & L. Edwards (Eds) (2017). Residual stresses ICRS-10. Millersville, USA: Materials Research Forum LLC. doi:10.21741/9781945291173-61
Abstract: In this work accumulative roll bonding (ARB) was used to combine AA1050 and AA6061 sheets to produce AA1050/AA1050, AA6061/AA6061 and AA1050/AA6061 laminates with ultrafine grained (UFG) structure. Two sheets of starting materials were roll bonded with 200 °C preheating for 180 s before rolling. The through-thickness residual stress distribution of these laminates processed up to two cycles of ARB was determined by neutron diffraction with spatial resolution of 0.2 mm through 1.5 mm thickness. The measurements also required high accuracy of only few MPa since residual stresses in the laminates peaked at only about 15 MPa. The laminates composed of the same material (AA1050/AA1050 and AA6061/AA6061) showed symmetric residual stress profile with tensile stress at the centre of the sheets and compressive stress at the surfaces. The AA1050/AA6061 laminates showed asymmetric distribution with residual tensile stress in the AA1050 layer and compressive stress in the AA6061 layer. A finite element model (FEM) was used to simulate the residual stress distribution and the results were in agreement with the measured results qualitatively. © The Authors
ISBN: 978-1-94529117-3
Appears in Collections:Conference Publications

Files in This Item:
File Description SizeFormat 
9781945291173.pdf26.3 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.