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A B S T R A C T   

The accurate prediction of elevated-temperature creep behaviour of alloys is important for preventing cata
strophic failure of systems operating under prolonged elevated temperature-stress conditions. Here, we couple 
the Kachanov-Rabotnov (K-R) creep model with a multi-objective genetic algorithm (MOGA) to predict the creep 
behaviour of Alloy 617 at 800◦C, 900◦C, and 1000◦C, under various stress conditions. It is shown that the MOGA- 
optimised K-R creep model can capture the overall elevated-temperature behaviour of the alloy at 800◦C under a 
wide range of stress conditions. However, at 900◦C and 1000◦C, oxidation leads to the atypical accumulation of 
creep plasticity, which the K-R model cannot account for. Nevertheless, it is shown that the proposed method
ology of optimising the K-R model with a MOGA can consistently provide accurate results within the limits of the 
K-R model.   

1. Introduction 

Alloy 617 is a nickel-based superalloy with a wide range of appli
cations in elevated-temperature systems across several industries, such 
as with intermediate heat exchanges in nuclear reactors [1]. Since these 
systems are required to operate at elevated temperatures and pressures, 
individual components are expected to undergo significant creep dam
age during their lifetime. For instance, intermediate heat exchangers in 
the next generation of nuclear reactors (Generation IV) are expected to 
operate at temperatures of up to 950◦C and at pressures up to 7MPa 
[2–4]. These operating conditions lead to the accumulation of creep 
damage, which if left unmanaged can lead to the unexpected failure of a 
component or an assembly. Furthermore, excessive creep damage can 
significantly shorten the life of the system and compromise its overall 
economic viability. As such, the ability to predict the creep behaviour 
and accumulation of creep damage in various components of the system 
is of technological importance for engineers wishing to design and 
maintain an elevated temperature system. 

Over the years, a number of empirical models have been developed 
to predict creep damage behaviour of different alloys in operational in- 
service conditions. The most widely used creep constitutive models are 

based on Norton’s law [5], the Larson-Miller parameter [6], or the 
Manson-Haferd [7] methodology. These models require a large number 
of experimental creep data (i.e., time-to-failure, strain-to-failure, and 
minimum creep rate) to derive a master curve, which is then used to 
interpolate and/or extrapolate the creep life of an alloy under given 
temperature-stress conditions. We refer to these models as single-point 
models because they can only predict distinct points on the creep 
life/damage curve. Typically, the time-to-failure is predicted to indicate 
the remaining life and help perform fitness-for-service analysis. 
Multi-point models capable of capturing the full creep life/damage 
curve were developed to improve the accuracy of creep predictions and 
remove unnecessary conservatism of single-point models. Examples of 
the well-established multi-point creep models include the Ductility 
Exhaustion (DE) [8], Stress-Modified Ductility Exhaustion (SMDE) [9], 
and Strain-Energy Density (SED) [10] creep-damage models. While 
these models focus on the prediction of secondary creep behaviour, they 
can be coupled with other parametric models to account indirectly for 
the tertiary creep behaviour of alloys, as shown by Kan et al. in Ref. [11]. 
In contrast, the Kachanov-Rabotnov (K-R) creep model [12,13] was 
designed to inherently account for the multi-regime nature of creep in 
alloys and thus improve the overall predictions of creep behaviour. The 
K-R model accounts for the secondary and tertiary creep regimes, which 
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is considered acceptable for Alloy 617 as it only exhibits a limited pri
mary creep regime [11,14,15]. However, the main challenge when using 
any multi-point constitutive model is finding the material parameters, 
which describe the observed creep behaviour of a given material. The 
strain and damage analytical method proposed by Stewart and Gordon 
[16] to obtain the K-R parameters is a step forward in avoiding a 
trial-and-error approach. However, it is somewhat intricate to employ as 
their method requires several intermediate regression analyses and 
subjective values, which makes it difficult to obtain generic parameters 
independent of applied stresses. In this paper, we present a methodology 
to find stress-independent K-R parameters which can be useful in 
describing long-term creep behaviour based on fittings to short-term 
creep tests. 

Various numerical methodologies such as linear regression [11,15], 
simulated annealing [17], and artificial neural networks [18,19] have 
been employed to determine unknown material parameters in consti
tutive creep models with mixed results. Linear regression is the most 
widely used, due to its simplicity and effectiveness. However, its heavy 
reliance on the initial (starting) parameter values makes it inadequate 
for use in complex optimisation problems that involve finding multiple 
interdependent material parameters describing creep behaviour of a 
given alloy. Global optimisers like simulated annealing perform better, 
but their performances can be inconsistent, computationally intensive, 
and time-consuming [17]. In recent years, artificial neural networks in 
the form of multi-layer perceptrons, have shown significant promise as 
they have higher fault tolerance and better optimising capabilities [18, 
19]. However, the training of neural networks requires a large amount of 
data, and their implementation can be complicated and require signifi
cant computational resources. Furthermore, the overfitting of training 
data can also result in unlikely predictions when extrapolating outside of 
the training range [20]. 

Population-based, stochastic, direct search algorithms, such as 
Evolutionary algorithms, are often employed in multi-objective opti
misation problems and can potentially overcome the limitations of trial- 
and-error and Stewart and Gordon [16] approaches as these algorithms 
can optimise many parameters simultaneously across different datasets. 
Evolutionary algorithms are metaheuristic optimisation algorithms that 
were inspired by the mechanism of biological evolution and natural 
selection [21,22]. A large number of such algorithms have been devel
oped, as highlighted in recent reviews [22–24]. Examples include the 
genetic algorithm, differential evolution, and particle swarm optimisa
tion. Genetic algorithms, in particular, have been used to find multiple 
material parameters in various crystal plasticity constitutive laws [25]; 
however, to the authors’ knowledge the extension of genetic algorithms 

to creep model development has not yet been attempted. 
In the present work, we employ a multi-objective genetic algorithm 

(MOGA) to determine stress-independent material parameters in the K-R 
creep model. This algorithm was selected due to its robustness and 
previous successful applications across multiple problems [21]. We 
calibrate the K-R model for Alloy 617 at 800◦C, 900◦C, and 1000◦C, 
using experimental creep data generated at the Idaho National Labora
tory (INL) [26]. We first employ the MOGA to find stress-independent 
K-R model’s material parameters (A, n, M,φ, and χ) using both short- 
and long-term creep data. We then find the material parameters using 
only the short-term creep data and demonstrate the utility of the cali
brated K-R model to predict the longer-term creep behaviour of the 
studied alloy extrapolating well beyond the training data. A 
non-exhaustive comparison between the MOGA and other optimisation 
techniques is out of scope of this paper as we are interested in quanti
tively evaluate the accuracy and repeatability of our methodology by 
direct comparison of the K-R model predictions with the experimental 
observations. We also conduct a parametric analysis of the MOGA 
optimisation settings and provide practical advice to achieve accurate 
and consistent optimisation results. 

2. Methodology 

Idaho National Laboratory (INL) undertook a decade long research 
program focused on the certification of Alloy 617 for elevated temper
ature nuclear pressure vessel applications operating at temperatures up 
to 950◦C. To understand and ultimately predict the elevated- 
temperature behaviour of Alloy 617 at various in-service conditions, 
INL has performed creep tests at different temperature-stress conditions 
[26–29]. The current work builds upon this experimental work by 
exploring the capability of the K-R creep model in predicting the creep 
behaviour of Alloy 617. We first use the INL’s experimental creep data to 
find the material parameters defining the K-R creep model (section 3) 
using MOGA optimisation (section 4), and then we test the accuracy of 
the K-R model predictions by direct comparison with the experimental 
measurements (section 5). 

The INL-provided creep experimental data includes uniaxial creep 
curves of Alloy 617 conducted at constant temperature-stress condi
tions. These experiments were conducted to failure at 800◦C (60MPa, 
65MPa, 70MPa, 80MPa), 900◦C (26MPa, 28MPa, 31MPa, 36MPa), and 
1000◦C (11MPa, 12MPa, 13MPa, 16MPa). The creep curves used in this 
study and all of the corresponding test conditions are summarised in 
Fig. 1. Note that the creep tests were conducted in air, which caused 
surface oxidation [30–32]. 

Nomenclature 

Creep-Related Parameters 
t Time 
t0 Initial time 
T Temperature 
tf Time-to-failure 
tp Time when primary creep regime begins 
ε Creep strain 
εf Strain-to-failure 
ε̇m Minimum creep rate 
εp Primary creep strain 
ε0 Initial creep strain 
σ Uniaxial stress 
ω Creep damage 

Material Parameters 
A Norton law parameter 

M Tertiary creep damage material parameter 
n Norton law parameter 
Φ Tertiary creep damage material parameter 
Х Tertiary creep damage material parameter 

Optimisation Parameters 
Etf Objective function for time-to-failure means square error 
Eε Objective function for creep strain means square error 
Eεf Objective function for strain-to-failure means square error 
Eε̇m Objective function for minimum creep rate means square 

error 
wε Weight for creep strain objective function 
wtf Weight for time-to-failure objective function 
wεf Weight for strain-to-failure objective function 
wε̇m Weight for minimum creep rate objective function  
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As seen in Fig. 1b and c, the experimental creep curves at tempera
tures above 800◦C and lower stresses exhibit atypical creep behaviour in 
their tertiary regimes. At those conditions, the creep curves have longer 
exposure times, whereby the kinetics of the alloy are more affected by 
the oxidation [31,33]. The creep curves shown in Fig. 1 also confirm that 
the creep life of Alloy 617 is spent predominantly in the secondary and 
tertiary creep regimes with a limited amount of the primary creep 
regime. This justifies using the K-R creep model, which omits the pri
mary creep regime for the prediction of the creep behaviour. Because of 
this limitation, the experimental datapoints within the primary creep 
regime were disregarded in the calculation of the K-R parameters. To 
improve accuracy, we accounted for the primary creep region by 
implementing a strain offset, ̂ε0, for the predicted creep curves. For each 
experimental creep curve, we computed the tangent from the point in 
which minimum creep rate occurs. The value of ε̂0 thus corresponds to 
the intercept between the tangent and the vertical axis, as shown in the 
schematic in Fig. 2. 

After removing the primary creep region from the experimental data, 
we processed the experimental creep data to remove noise and create 
data input that was better suited for the MOGA. This involved fitting 
each creep curve to a 15-degree1 polynomial and extracting 50 equally 

spaced data points from the polynomials to use in the study. This was 
done because each INL dataset contains thousands of data points 
(approximately 9000), which can be accurately represented by 50 data 
points extracted from each polynomial. This technique reduces the 
number of calculations required, expediting the optimisation process 
without compromising the MOGA’s performance. Finally, the INL 
datasets contain an uneven number of data points, in which the MOGA 
results would be biased by denser datasets. Representing each dataset 
with an equal number of data points removes this bias. 

3. Kachanov-Rabotnov (K-R) creep model 

The derivation of the K-R model used in this study follows Stewart 
et al. [16] – this involves the incorporation of Norton’s power law [5] 
into the temperature-dependent K-R constitutive equations. Norton’s 
power law is considered a single-point model used to estimate the 
minimum creep rate, ε̇m, of a material at given temperature and certain 
stress: 

ε̇m =Aσn (1)  

where σ is the uniaxial stress, and A and n are temperature dependent 
material parameters describing the secondary creep regime of the alloy. 
Hence, Norton’s power law captures only the secondary creep behaviour 
– this is not suitable for Alloy 617, which can exhibit a long tertiary 
creep regime (Fig. 1), especially for the relatively higher-temperature, 

Fig. 1. Plots of observed, raw creep strain data for Alloy 617 from INL, for creep tests (a) at 800 ◦ C, (b) at 900◦ C, and (c) at 1000◦C, and (d) information about those 
creep tests. 

1 The fitting polynomial has to be of a high and odd degree (2k + 1, k = 5,6,7 
…) to best conform to the shape of the typical Alloy 617 creep curve. 
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lower-stress conditions [28,29]. 
To account for the tertiary creep regime, Kachanov and Rabotnov 

proposed interfacing the Continuum Damage Mechanics (CDM) frame
work with Norton’s power law [16]. This leads to a set of creep damage 
constitutive equations: 

ε̇= dε
dt

= A
( σ

1 − ω

)n
(2)  

ω̇=
dω
dt

=
Mσχ

(1 − ω)φ (3)  

where ω is the creep damage, A and n are the Norton’s power law ma
terial parameters from Eq. (1), while M, φ, and χ are material parameters 
describing the tertiary creep region. It is assumed that the stress and 
temperature are constant. The initial conditions are set such that t0 = 0 
and ω0 = 0, where t0 represents the initial time and ω0 represents the 
initial damage. With these assumptions, the damage evolution equation 
(Eq. (3)) can be integrated and simplified as follows: 

∫ω

ω0=0

(1 − ω)
φdω=

∫t

t0=0

Mσχdt (4)  

ω= 1 − [1 − (φ + 1)Mσχt]
1

φ+1 (5) 

The creep damage expression in Eq. (5) can then be substituted into 
the creep damage constitutive equation proposed by Kachanov and 
Rabotnov (Eq. (2)) to eliminate the creep damage variable: 

ε̇= dε
dt

=A

(
σ

[1 − (φ + 1)Mσχt]
1

φ+1

)n

(6) 

This expression can be integrated with the assumption that ε0 = ε̂0, 

where ε0 represents the initial creep strain, and ̂ε0 is the predicted strain 
offset to account for the primary creep, as follows: 

∫ε

ε0=̂ε0

dε=Aσn
∫t

t0=0

[1 − (φ + 1)Mσχt]−
n

φ+1dt (7) 

The resulting expression in Eq. (8) defines the form of the K-R model 
used in the present work, which describes the creep strain as a function 
of time and five temperature-dependent material parameters (A, n, M,φ,
and χ). 

ε(t) =Aσn[1 − (φ + 1)Mσχt]
φ+1− n

φ+1 − 1
Mσχ(n − φ − 1)

+ ε̂0 (8) 

The challenge of the K-R model lies in finding these five unknown 
material parameters, which describe the creep behaviour of the alloy at 
various stress conditions. As described in Refs. [16,17], the general 
approach is to first determine the A and n parameters by linearising 
Norton’s power law (Eq. (1)) and applying linear regression (see Ap
pendix B). Once the A and n parameters have been computed, the M,φ,
and χ parameters are obtained using trial-and-error approaches or an 
optimisation algorithm. Our study presents an alternative approach 
whereby the MOGA will be used to simultaneously optimise all five 
material parameters. 

4. Multi-objective genetic algorithm (MOGA) 

Here, we employed the MOGA implementation from the PYMOO 
library [34] for computing the values of all five unknown material pa
rameters (A, n, M,φ, and χ) defining the K-R creep model (Eq. (8)). In 
short, all genetic algorithms (GA) are based on a randomised search 
technique inspired by the principles of natural selection, and thus use 
terminology related to genetics such as gene, chromosomes, population, 
mating, crossover, and mutation rate [35–37]. In the context of the out
lined optimisation problem, a gene is a scalar representing one of the 
unknown material parameters (A, n, M,φ, or χ), a chromosome is an array 
representing a set of these material parameters ([A, n, M, φ, χ]), and a 
population represents a collection of chromosomes (i.e., the material 
parameter set used in the K-R model). The objective of the GA optimiser 
is then to produce a population of chromosomes, which best satisfy one or 
multiple objective functions, thus finding a set of five material param
eters, which lead to the most accurate K-R model prediction when 
compared to the observed elevated-temperature material behaviour. 

The GA begins with an initial population containing chromosomes 
with randomly generated genes. The GA iteratively improves the pop
ulation by selectively breeding the chromosomes every generation. The 
selection process for the breeding involves evaluating the fitness of each 
chromosome against one or multiple objective functions, whereby 
chromosomes with higher fitness levels will be chosen to breed and thus 
pass on their genetic information to their offspring. The breeding of 
chromosome pairs relies mainly on the so-called crossover and mutation 
operations. The crossover operation involves swapping the genes be
tween two chromosomes to produce an offspring. The mutation opera
tion involves randomly changing one or more genes in the offspring, to 
promote diversity as the population evolves, and thus avoid a local 
minimum solution. 

In implementing the MOGA, the user must define appropriate values 
for the hyperparameters to ensure the optimal performance of the 
MOGA. These hyperparameters include the crossover probability, mu
tation probability, initial population, and number of offspring. Here, 
these parameters were respectively set to 65%, 35%, 800, and 800. 
These values were the result of an extensive parametric sensitivity study, 
as detailed in Appendix A. 

In addition to defining the hyperparameter values, the user must also 
specify the bounds for the material parameters (A, n, M,φ, and χ), to 
define the shape of the parameter search space. The initial values for the 

Fig. 2. Schematic of an observed creep curve (solid line) with the predicted 
creep curve (dotted line), annotated with the creep regimes, the initial creep 
strain (̃ε0), the predicted creep strain offset (ε̂0), and relevant parameters 
tackled by the objective functions. The MOGA goal is to minimise the shaded 
area Ω along with the predicted and observed differences of time-to-failure and 
of strain-to-failure – i.e., t̂ f − t̃f and ε̂f − ε̃f . It is also aimed at aligning the 
predicted creep curve with the observed one, which is achieved by minimising 
the difference between the observed (̃̇εm) and predicted (̂̇εm) minimum 
strain rates. 
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lower and upper bounds were based on literature [16,17]. Through 
trial-and-error, the final set of lower and upper bounds were set to the 
values shown in Table 1. This final set of bounds was selected such that 
the search space was small enough that the MOGA could converge in a 
reasonable amount of time, but large enough to showcase the MOGA’s 
optimisation capabilities. 

Finally, we configured the MOGA to evaluate the fitness of individual 
chromosomes in the population by assessing the performance of the K-R 
model creep curve predictions against the experimental creep curves, 
using four objective functions. These objective functions measure the 
deviations between the K-R model predictions and the experimental 
data using the mean square errors defined as:   

Etf (M,φ, χ)= 1
S1

∑S1

i=1

((
t̃f
)

i −
(

t̂ f
)

i

)2
=

1
S1

∑S1

i=1

(
(
t̃f
)

i −
1

(φ + 1)M(σi)
χ

)2

(10)     

Eε̇m (A, n)=
1
S1

∑S1

i=1

(
(̃̇εm)i − (̂̇εm)

)2
=

1
S1

∑S1

i=1

(
(̃̇εm)i − A(σi)

n)2 (12)  

where S1 represents the number of experimental datasets used in the 
optimisation process, and S2 represents the size of each experimental 
dataset – here, S2 = 50, as explained in section 2. The individual 
objective functions are described below and represented schematically 
in Fig. 2.  

(1) Eε (Eq. (9)) evaluates the mean square error between all 50 creep 
strain values on the predicted (ε̂) and experimentally observed (ε̃) 
creep curves (excluding the primary creep), for each dataset. 
Minimising Eε will effectively minimise the common area be
tween the predicted and experimental curves – i.e., the shaded 

area, Ω, in Fig. 2. Thus, for each creep curve, as Eε→ 0, Ω =

∫t̂ f

tp
ε̂dt −

∫t̃f

tp
ε̃dt→0, where tp represents the time in which the pri

mary creep regime ends. 
(2) Etf (Eq. (10)) evaluates the mean square error between the pre

dicted time-to-failure ( t̂ f ) and the experimentally observed time- 
to-failure (̃tf ), for each dataset. Minimising Etf will effectively 
minimise the horizontal displacement between the endpoints of 
the predicted and experimental curves – i.e., the difference be
tween the ̂tf and ̃tf values. Thus, for each creep curve, as Etf →0, 
t̂ f − t̃f →0. 

(3) Eεf (Eq. (11)) evaluates the mean square error between the pre

dicted strain-to-failure (ε̂f ) and the experimentally observed 
strain-to-failure (ε̃f ), for each dataset. Minimising Eεf will effec
tively minimise the vertical displacement between the endpoints 
of the predicted and experimental curves – i.e., the difference 
between the ε̂f and ε̃f values. Thus, for each creep curve, this 
means that as Eεf →0, ε̂f − ε̃f →0. 

(4) Eε̇m (Eq. (12)) evaluates the mean square error between the pre

dicted minimum creep rate (̂̇εm) and the experimentally observed 
minimum creep rate (̃̇εm), for each dataset. As ε̇m represents the 
slope of the creep curve in the secondary creep stage, minimising 
Eε̇m will approximate the alignment between the observed and the 
predicted creep curves in the secondary region. For each creep 
curve, as Eε̇m →0, ̂ε̇m − ̃̇εm→0. Note that even in the case of perfect 
alignment (̂̇εm = ̃̇εm) the creep curves might be offset (parallel) 
from each other, with this offset being the difference between the 
observed and predicted primary creep strain (ε̂p − ε̃p). 

By means of these four predefined objective functions, the MOGA 
promotes solutions that lead to the smallest discrepancy (error) between 
the K-R model creep curve predictions (Eq. (8)) and INL’s experimental 
creep curves. In other words, only chromosomes leading to small de
viations of the K-R model from the experimental data are allowed to 
propagate so that the final population of chromosomes contains a large 
number of good solutions. We selected the optimal chromosome (i.e., 
the set of the five material parameters) from the final population by 
checking which chromosome best satisfied all four objective functions 
(Eq. (9) - (12)). This was done by summing the normalised mean square 
error values for the four objective functions, in which the optimal set of 
material parameter (A, n, M, φ, and χ) values gave the minimum value 
for the total normalised mean square error. This is expressed mathe

matically in Eq. (13), where ̃ε, ̃tf , ̃εf , and ̃ε̇m are the average values of the 
experimental strain, time-to-failure, strain-to-failure, and minimum 
creep rate. 

Table 1 
Lower and upper bounds of the material parameters of the K-R model.   

A n M φ χ 

Lower Bound 10− 20 0 0 0 0 
Upper Bound 10− 5 101 100 102 101  

Eε(A, n,M,φ, χ)= 1
S1

∑S1

i=1

1
S2

∑S2

j=1

(
(ε̃)i,j − (ε̂)i,j

)2
=

1
S1

∑S1

i=1

1
S2

∑S2

j=1

⎛

⎝(̃ε)i,j −

⎛

⎝A
(
σi,j
)n
[
1 − (φ + 1)M

(
σi,j
)χ ti,j

]φ+1− n
φ+1 − 1

M
(
σi,j
)χ
(n − φ − 1)

+ (ε̂0)i

⎞

⎠

⎞

⎠

2

(9)   

Eεf (A, n,M,φ, χ)= 1
S1

∑S1

i=1

((
ε̃f
)

i −
(

ε̂f
)

i

)2
=

1
S1

∑S1

i=1

(
(
ε̃f
)

i −

(
A(σi)

n

M(σi)
χ
(φ + 1 − n)

+ (ε̂0)i

))2

(11)   
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A, n,M,φ, χ = argmin
A,n,M,φ,χ

{

wε

̅̅̅̅̅
Eε

√

ε̃
+wtf

̅̅̅̅̅̅
Etf

√

t̃f

+wεf

̅̅̅̅̅̅
Eεf

√

ε̃f
+wε̇m

̅̅̅̅̅̅̅
Eε̇m

√

̃̇εm

}

(13) 

The weights, wε,wtf ,wεf , and wε̇m , are specified by the user to be equal 
to 1, which puts equal weighting on all four normalised mean square 
errors. This is because the aim was to predict the full creep curves as 
accurately as possible, and thus evaluate the K-R model’s performance in 
capturing the overall creep behaviour of the studied alloy. 

However, if desired, an analyst can prioritise minimising a specific 

error by introducing uneven weights in Eq. (13). For example, the time- 
to-failure (tf ) is typically of the highest priority for most engineering 
applications, so one could increase the weight, wtf , associated with the 
Etf objective function. Note that it is not recommended to set one of the 
weights to zero. Since each source of error serves a purpose in the 
optimisation process, negating one of them can result in abnormally 
shaped predictions. 

Fig. 3. Results of the optimisation at 800 ◦C with all stress conditions (approach 1, at 60MPa, 65MPa, 70MPa, and 80MPa) on the left, and limited stress conditions 
(approach 2, at 70MPa and 80MPa) on the right. Plots in a) and d) display the observed (solid) and predicted (dotted) creep curves. Plots in b) and e) display the 
observed and predicted times-to-failure. Plots in c) and f) display the observed and predicted strains-to-failure. 
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5. Results and discussion 

In what follows, we first validate the proposed methodology by 
predicting the creep behaviour of Alloy 617 at 800◦C. We then evaluate 
the accuracy of the K-R creep model predictions by direct comparison 
with the experimentally measured time- and strain-to failure (tf , εf ), as 
these hold the most value in elevated-temperature engineering appli
cations. We also pay attention to the prediction of the kinetics of the 
creep plasticity – i.e., the ability of the utilised K-R model to capture the 
shape of the measured creep curves. Finally, we employ the validated 
methodology in predicting the creep behaviour of the studied alloy at 
900◦C and 1000◦C at various stress conditions. 

5.1. Predicting creep of alloy 617 at 800◦C 

To test the robustness of the proposed methodology (i.e., coupled K-R 
model and MOGA optimisation), we performed the MOGA optimisation 
with the INL produced experimental data (Fig. 1) using two different 
approaches:  

(1) Firstly, the MOGA optimisation of the five K-R model’s (Eq. (8)) 
material parameters was performed by trying to satisfy the pre- 
defined objective functions (Eε, Etf , Eεf , and Eε̇m ) for all avail
able experimental creep curves at the given temperature (60MPa, 
65MPa, 70MPa, and 80MPa, at 800◦C, Fig. 1a). Hence, S1 = 4 in 
the objective function expressions defined in Eqs. (9)–(12).  

(2) Secondly, the MOGA optimisation of the five K-R model’s (Eq. 
(8)) material parameters was performed by trying to satisfy the 
pre-defined objective functions (Eε, Etf , Eεf , and Eε̇m ) only for the 
short-term creep experimental data (70MPa and 80MPa). Hence, 
S1 = 2 in the definitions for the objective function shown in Eqs. 
(9)–(12) – this is because this approach uses only 2 available 
experimental creep curves to find an optimal set of K-R model’s 
(Eq. (8)) material parameters. The long-term creep experimental 
data (60MPa and 65MPa) are later used to validate the accuracy 
of the K-R creep model in extrapolating to longer lifetimes than 
the model training data (i.e., to predict the experimental data that 
was not used in the optimisation of the model’s parameters). 

Note that a MOGA optimisation conducted with all stress conditions 
(approach 1) took an average of 4600 s of CPU time on a 3.80 GHz Intel 
Core i7-10700KF processor. A MOGA optimisation with limited stress 
conditions (approach 2) took approximately half that time, due to the 
process computing half the calculations. We summarise the results for 
ten repeat optimisations using both approaches in Fig. 3, where the plots 
on the left (Fig. 3a–c) are from the first approach, and the plots on the 
right (Fig. 3d–f) are from the second approach. 

The plot in Fig. 3a compares the observed and predicted creep curves 
when the MOGA optimisations were conducted by taking into the ac
count all experimental data (approach 1). It becomes clear when 
comparing the experimental and predicted creep curves that the MOGA 
optimiser can consistently find a good set (chromosome) of material 
parameters (A, n, M,φ, and χ) for the K-R creep model, which can then 
capture the overall elevated-temperature behaviour of the alloy. In 
particular, the K-R model is very accurate when it comes to predicting 
the time-to-failure (tf ). This is evident from Fig. 3b, which compares the 
predicted and observed tf – notice that all the predictions are on the 1:1 
line. While the K-R model is not as accurate in predicting the strain-to- 
failure (εf ), as seen in see Fig. 3c, the predictions are conservative and 
can be thus considered ‘acceptable’ from an engineering application 
perspective. When it comes to the predictions of the kinetics of the creep 
plasticity, one can see in Fig. 3a that the model captures the overall 
creep behaviour reasonably well. Specifically, the predicted creep curve 
aligns well with the experimental curve in the secondary creep regime; 
this indicates that the minimum creep rate is a good representation of 

the secondary creep regime for Alloy 617. However, the K-R model’s 
predictions seem to show a less distinctive secondary-to-tertiary tran
sition. Recall that here we are considering only the secondary and ter
tiary creep regions (Fig. 3), as the K-R creep model does not account for 
the primary creep (see section 2), and in general Alloy 617 exhibits only 
limited primary creep [28,29]. 

Fig. 3d–f presents the results of the MOGA optimisations conducted 
using the short-term experimental creep curves at 70MPa and 80MPa 
(approach 2). In other words, the MOGA optimisation searches for the 
material parameters of K-R model by attempting to satisfy only the 
short-term creep measurements (creep curves). The MOGA-identified K- 
R model’s material parameters (A, n, M,φ, and χ) were then used to 
predict the long-term creep behaviour at the lower stress conditions 
(60MPa and 65MPa) as well as higher stress conditions (70MPa and 
80MPa). As it can be seen in Fig. 3d, the accuracy of the employed 
methodology did not suffer when we limited the experimental data in 
the MOGA optimisation only to the short-term creep curves (i.e., high 
stress conditions). The time-to-failure (tf ) is again predicted with a high 
accuracy (Fig. 3e), with all the predictions along the 1:1 line. Like the 
results from the first approach shown in Fig. 3c, the predictions of the 
strain-to-failure (εf ) using the second approach shown in Fig. 3e are not 
as accurate as the tf predictions. However, the εf predictions are again 
mostly conservative, which is considered ‘acceptable’ from an engi
neering perspective. Lastly, when it comes to the prediction of the ki
netics of the creep plasticity, the K-R model again predicts a less 
distinctive secondary-to-tertiary transition when compared to the 
experimental measurements. However, it captures the overall secondary 
and tertiary creep regime behaviour of the Alloy 617 reasonably well. 

Hence, it is concluded that the K-R creep model can accurately 
capture the creep behaviour of Alloy 617, and that the MOGA performs 
well when searching for the unknown material parameters in a large 
parameter space (Table 1). Moreover, the K-R model paired with the 
MOGA is capable of predicting the long-term creep behaviour of Alloy 
617 from shorter term data even when the long-term experimental data 
is not available. Specifically, it is shown that two sets of short-term creep 
experimental data are sufficient to fully optimise the K-R creep model 
using the MOGA methodology. This is of technological significance, as in 
practice, it is easier and less costly to obtain the short-term experimental 
data (at higher stress conditions) than the long-term experimental data 
(at lower stress conditions), which are typically found in the operational 
conditions of many elevated-temperature systems. Furthermore, these 
results point to the thermal stability of the microstructure of Alloy 617 at 
800◦C – i.e., the alloy has a consistent creep mechanism at the various 
stress conditions. However, caution is recommended if applying this 
approach at the lower temperature of 750◦C, which coincides with the 
formation of γ′ precipitates [38], whereby there is a change of creep 
mechanism to a threshold stress behaviour [29]. 

Next we briefly discuss the repeatability of the MOGA optimisation, 
which is inherently connected to the accuracy of the K-R creep model 
predictions. Due to the random nature of MOGA optimisation, finding a 
unique and reproducible result is not guaranteed. One thus needs to look 
into the reproducibility and consistency of finding an optimal solution 
(chromosome) – in our case, an optimal set of stress-independent K-R 
model’s material parameters (A, n, M,φ, and χ), which best describes the 
observed creep data. We utilised boxplots to analyse the material 
parameter values obtained from the two approaches defined above – 
these boxplots can be seen in Fig. 4. To better analyse the statistical 
variability, an additional 40 optimisations were conducted for each 
approach (in addition to the 10 shown in Fig. 3). It is clear from Fig. 4 
that there is a measurable variation in the values of the searched ma
terial parameters identified in the 50 independent MOGA optimisations. 
However, it is also clear that the MOGA can identify the searched ma
terial parameters consistently within a reasonable limit. The maximum, 
minimum, average, and standard deviations of the determined material 
parameters for both approaches are tabulated in Table 2 and Table 3. 
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Both approaches yielded similar results, which points to the micro
structural stability of Alloy 617 and the ability of K-R model to capture 
its creep behaviour. However, when examining the material parameter 
values in Fig. 4, the most noticeable difference is with identifying the A 
and n parameters – these define the secondary creep regime via Norton’s 
power law (Eq. (1)). When using the first approach, A and n have 
average values of 1.00 × 10− 16 and 7.57 (red/left-hand side boxplots in 
Fig. 4). When using the second approach, A and n have average values of 
7.94 × 10− 16 and 7.05 (blue/right-hand side boxplots in Fig. 4). Finally, 
when obtaining the A and n parameters from the linearisation of Nor
ton’s power law (see Appendix B), A and n had values of 3.15× 10− 16 

and 7.29 (green dashed lines in Fig. 4). While both approaches produced 
A and n values close to those obtained from Norton’s power law, neither 
approach can be considered more accurate than the other. The first 
approach yields A and n values higher than those identified by the power 
law, while the second approach yields lower values. When it comes to 
finding the M,φ, and χ material parameters, which define the tertiary 
creep regime (Eq. (3)), both approaches lead to very similar results with 
a significant overlap in the identified solutions. However, when using 
only two short-term creep curves for the model optimisation (approach 
2), there is a greater spread in the identified M,φ, and χ material pa
rameters from the 50 independent MOGA optimisation runs. This is 

likely due to the fact that having two creep curves in the MOGA opti
misation (approach 2) constrains the MOGA optimisation solution space 
to a lesser degree than when we use all available experimental data 
(approach 1). 

5.2. Predicting creep of alloy 617 at 900◦ C and 1000 ◦C 

After demonstrating that coupling the K-R model with MOGA opti
misation yields satisfactory results at 800 ◦C, we attempted the same 
methodology to predict the creep behaviour of Alloy 617 at 900◦C and 
1000◦C (Figs. 1 and 2). As such, we again conducted ten independent 
optimisations utilising the available INL-produced experimental data 
while adopting the two approaches defined above. This was done 
independently at both temperatures because we are using the 
temperature-independent implementation of the K-R creep model (Eq. 
(8)). The obtained predictions are then compared with the experimental 
data in Fig. 5 (900◦C) and Fig. 6 (1000◦C). The results of the first 
optimisation approach (utilising all available experimental data) are 
again on the left, and the results of the second optimisation approach 
(utilising only the short-term experimental data) are again on the right. 

While the creep predictions at 900◦C (Fig. 5) are more accurate than 
those at 1000◦C (Fig. 6), the predictions at both temperatures are 
significantly less accurate when compared to the predictions obtained at 
800◦C (Fig. 3 in section 5.1). Furthermore, as it can be seen in Figs. 5 and 
6, predictions at these temperatures vary significantly. The decreased 
accuracy and consistency in the creep predictions indicate a change in 
the ongoing creep mechanism, which is thought to be triggered by 
oxidation at these higher temperatures, which has been found to be 
significant when testing Alloy 617 in air [30–32]. As it is evident from 
Fig. 1b–c, the cumulative effect of oxidation over the relatively longer 
creep lives results in unconventional creep behaviour, which manifests 
itself by atypically shaped creep curves. Since the oxidation is a 
diffusion-controlled process, the shorter tests are inherently less 
affected. In other words, the effect of oxidation becomes more pro
nounced in the long-term creep tests (> 5000h) that were conducted at 
lower stress conditions (i.e., 900◦C ​ /26 ​ MPa, 1000◦C ​ /11 ​ MPa, 
1000◦C ​ /12 ​ MPa, and 1000◦C ​ /13 ​ MPa). Thus, the K-R creep model’s 
inability to account for the shift in creep behaviour over long times at 
very high temperatures, resulted in the decreased accuracy in the creep 
predictions at 900◦C and 1000◦C. 

It can also be observed that, at both 900◦C and 1000◦C, the creep 
predictions using approach 1 (utilising all available data) is less accurate 
and has a greater variance, when compared to the creep predictions 
using approach 2 (utilising only short-term data). This can be attributed 
to the fact that approach 1 includes the long-term creep tests in the 

Fig. 4. Boxplots of optimised material parameters of the K-R model (A, n, M, φ, and χ) at 800 ◦C for all stress conditions (approach 1, at 60MPa, 65MPa, 70MPa, and 
80MPa) on the left (red), and limited stress conditions (approach 2, at 70MPa and 80MPa) on the right (blue). In the boxplots, the horizontal lines represent the mean, 
the boxes represent the standard deviations, and the whiskers represent the range. The green dotted lines represent the values of the A and n parameters obtained 
from Norton’s power law. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Summary of the MOGA optimisations at 800 ◦C for all stress conditions (60MPa, 
65MPa, 70MPa, and 80MPa).   

Approach 1 

A n M φ χ 

Maximum 2.51× 10− 16 7.91 6.31× 10− 16 21.2 6.14 
Minimum 2.00× 10− 17 7.36 1.00× 10− 16 16.2 5.65 
Average 1.00× 10− 16 7.57 2.51× 10− 16 18.1 5.89 
Standard Deviation 0.587 0.121 0.625 1.06 0.117  

Table 3 
Summary of the MOGA optimisations at 800◦C for limited stress conditions 
(70 MPa and 80 MPa).   

Approach 2 

A n M ϕ χ 

Maximum 3.98 × 10− 16 7.21 2.00 × 10− 17 17.8 6.48 
Minimum 3.98 × 10− 15 6.73 2.00 × 10− 15 13.8 5.39 
Average 7.94 × 10− 16 7.05 1.2610− 16 15.4 6.10 
Standard Deviation 0.622 0.108 0.412 0.886 0.210  
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MOGA optimisation, while approach 2 excludes them. The atypically 
shaped creep curves cannot be accounted for by the K-R creep model 
(Eq. (8)), nor by the associated MOGA objective functions (Eq. (9) - 
(12)). As such, their inclusion in the optimisation severely compromised 
the performance of the MOGA by introducing regions of false minima in 
the optimisation space. 

Nevertheless, the proposed methodology utilising the MOGA does 
work within the limits of the employed K-R creep model. As shown in 
Figs. 5 and 6, the model can provide indicative results when it comes to 

the tf and εf predictions at both temperatures. It is, however, recom
mended that the analyst wishing to optimise the K-R model using MOGA 
optimisation checks the repeatability and consistency of the solution to 
avoid solution outliers. 

6. Conclusion 

In this study, we introduced the methodology of combining the 
temperature-dependent Kachanov-Rabotnov (K-R) creep model with 

Fig. 5. Results of the optimisation at 900 ◦C with all stress conditions (approach 1, at 26MPa, 28MPa, 31MPa, and 36MPa) on the left, and limited stress conditions 
(approach 2, at 31MPa and 36MPa) on the right. Plots in a) and d) display the observed (solid) and predicted (dotted) creep curves. Plots in b) and e) display the 
observed and predicted times-to-failure. Plots in c) and f) display the observed and predicted strains-to-failure. 
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multi-objective genetic algorithm (MOGA) optimisation. We evaluated 
the methodology against the experimental data for the prediction of 
creep behaviour of Alloy 617 at 800◦C, 900◦C, and 1000◦C, under 
various stress conditions. 

We demonstrated that the K-R model was capable of capturing the 
elevated-temperature behaviour of Alloy 617 at 800◦C under a wide 
range of stress conditions, even when the model was optimised utilising 
limited experimental data (short-term creep curves). In particular, the 
MOGA-optimised K-R creep model was able to predict the time-to- 

failure (tf ) with excellent accuracy. While the strain-to-failure (εf ) pre
dictions are not as accurate, they are generally conservative, even 
though the predictions’ conservatism is not guaranteed. The overall 
behaviour (i.e., the kinetics of the creep plasticity accumulation) of the 
alloy at 800◦C is also reasonably well captured, even though the pre
diction of the secondary-to-tertiary creep regime transition is somewhat 
less distinct when compared to the experimental data. 

We also investigated the performance of the methodology with creep 
data at 900◦C and 1000◦C. The accuracy of the K-R model predictions 

Fig. 6. Results of the optimisation at 1000 ◦C with all stress conditions (approach 1, at 11MPa, 12MPa, 13MPa, and 16MPa) on the left, and limited stress conditions 
(approach 2, at 13MPa and 16MPa) on the right. Plots in a) and d) display the observed (solid) and predicted (dotted) creep curves. Plots in b) and e) display the 
observed and predicted times-to-failure. Plots in c) and f) display the observed and predicted strains-to-failure. 
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dropped significantly when trying to capture the behaviour of Alloy 617 
at those temperatures, especially for the creep data obtained at low 
stress conditions. This was attributed to oxidation, which affects the 
accumulation of the creep strain and the failure mechanism, resulting in 
an atypical creep curve shape that the K-R model cannot capture. Due to 
the diffusion characteristic of the oxidation process, this has more pro
nounced effect in the case of long-term creep tests (i.e., low stresses). As 
such, the kinetics of the creep plasticity during the long-term creep tests 
is not well captured. Nevertheless, we have shown that MOGA- 
optimised K-R models can still provide an indicative result when it 
comes to the time-to-failure (tf ), and strain-to-failure (εf ) predictions at 
the higher temperatures. Additionally, based on our repeated runs of up 
to 50 optimisations, it is recommended that at least 10 independent 
MOGA optimisations should be conducted to ensure the repeatability 
and consistency of the solution. This becomes particularly important 
when trying to optimise the K-R model under conditions where creep 
mechanism changes from oxidation and/or microstructure evolution 
might occur. 

Ultimately, we have demonstrated that MOGA optimisation can 
consistently find a set of stress-independent material parameters (A, n, 
M, φ, and χ) for the K-R creep model, which can provide accurate sec
ondary and tertiary creep predictions, when the creep mechanism re
mains constant. Future advancements could involve employing 
microstructure-informed creep models, such as crystal-plasticity 

models, to predict all three stages of elevated-temperature creep 
behaviour. However, the evaluation of such models is often computa
tionally expensive, which introduces additional challenges regarding 
the optimisation of the material parameters. 
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Appendix A 

The performance of the MOGA is heavily dependent on the user-defined values for the hyperparameters, namely the crossover probability, mu
tation probability, initial population, and number of offspring. The values of these hyperparameters vary for different optimisation problems. Thus, to 
determine appropriate hyperparameter values for the parameter optimisation of the K-R creep model, we conducted a sensitivity study using the INL 
creep data at 60MPa, 65MPa, 70MPa, and 80MPa, at 800◦C. 

The results of the study are in the form of two heatmaps (Fig. A1) and a plot (Fig. A2), which use the total normalised mean square error values of 
the four objective functions, as seen in Eq. (13). The first heatmap studies the crossover probability and mutation probability pairs, in which an 
appropriate pair was found to be 65% and 35%, respectively. The second heatmap studies the initial population and number of offspring pairs, in 
which an appropriate pair was found to be 800 and 800, respectively. Using these hyperparameter values, the plot studies the number of generations 
required to reach the steady-state value for the total normalised error, which was found to be approximately 4000 generations. For each pair in the 
heatmaps and value in the plots, the MOGA was used to conduct 5 optimisations on the A, n, M, φ, and χ parameters. This was done to improve the 
reliability of the results.

Fig. A1. The heatmaps in a) and b) plot the crossover probability against the mutation probability, and the initial population against the number of offspring, 
respectively. Each cell represents the averaged total normalised error (Eq. (13)) of 5 optimisations at 800 ◦C.  
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Fig. A2. Plot of the total normalised error (Eq. (13)) against the number of generations at 800 ◦ C.  

Appendix B 

Norton’s power law can be linearised by wrapping both sides of the expression in Eq. (1) by the natural logarithmic function. The linearised power 
law can then be rearranged into the expression shown in Eq. (14), which can be used with linear regression to obtain values for the A and n parameters, 
given a set of ε̇m and σ values from the same temperature. 

ln(ε̇m)= n ln(σ) + ln(A) (14) 

Linear regression was conducted with the linearised power law using the creep data at 800◦ C for all stress conditions (60MPa, 65MPa, 70MPa, and 
80MPa). The results are shown in Fig. B1, where A is represented by the intercept of the vertical axis, and n is represented as the gradient of the line. 
Thus, one can infer that the optimised A and n values are e− 35.693 (3.153× 10− 16) and 7.2884, respectively.

Fig. B1. Plot of the linearised Norton’s power law using creep experimental data at 800 ◦ C, and stress conditions of 60MPa, 65MPa, 70MPa, and 80MPa.  

Note that one needs at least three experimental datapoints (from three creep tests conducted at different stress conditions) to reliably apply the 
linearisation Norton’s power law to obtain the values for the A and n parameters. 
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