Journal Articles
Browse
Browsing Journal Articles by Subject "Acetylene"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOxidative acetylenic coupling reactions as a surface chemistry tool(2011-09-14) Ciampi, S; James, M; Darwish, N; Luais, E; Guan, B; Harper, JB; Gooding, JJA novel method to prepare redox monolayers on silicon electrodes has been developed that employs CuI-catalyzed oxidative acetylenic coupling reactions for molecular electronic type applications. As the first case study, ethynylferrocene was covalently immobilized onto an acetylene-terminated monolayer on a Si(100) surface to give a 1,3-diyne (C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-) linked redox assembly. The derivatization process requires no protection/de-protection steps, nor activation procedures. The effect of the conjugated diyne linkage on the rate of electron transfer between tethered ferrocenyl units and the silicon electrode is benchmarked against well-established "click" products (i.e. 1,2,3-triazole linkage). The surfaces, after each step, are characterized thoroughly using X-ray reflectivity (XRR), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The coupling chemistry provides a useful strategy for functionalizing silicon surfaces and contributes to an expanding repertoire of wet chemistry routes for the functionalization of solid substrates.© 2011, Royal Society of Chemistry
- ItemSilicon (100) electrodes resistant to oxidation in aqueous solutions: an unexpected benefit of surface acetylene moieties(American Chemical Society, 2009-02-17) Ciampi, S; Eggers, PK; Le Saux, G; James, M; Harper, JB; Gooding, JJHere we report on the functionalization of alkyne-terminated alkyl monolayers on highly doped Si(100) using click" reactions to immobilize ferrocene derivatives. The reaction of hydrogen-terminated silicon surfaces with a diyne species was shown to afford very robust functional surfaces where the oxidation of the underlying substrate was negligible. Detailed characterization using X-ray photoelectron spectroscopy, X-ray reflectometry, and cyclic voltammetry demonstrated that the surface acetylenes had reacted in moderate yield to give surfaces exposing ferrocene moieties. Upon extensive exposure of the redox-active architecture to oxidative environments during preparative and characterization steps, no evidence of SiOx contaminants was shown for derivatized SAMs prepared from single-component 1,8-nonadiyne, fully acetylenylated, monolayers. An analysis of the redox behavior of the prepared Si(100) electrodes based on relevant parameters such as peak splitting and position and shape of the reduction/oxidation waves depicted a well-behaved redox architecture whose spectroscopic and electrochemical properties were not significantly altered even after prolonged cycling in aqueous media between -100 and 800 mV versus AglAgCl. The reported strategy represents an experimentally simple approach for the preparation of silicon-based electrodes where, in addition to close-to-ideal redox behavior, remarkable electrode stability can be achieved. Both the presence of a distal alkyne moiety and temperatures of formation above 100 degrees C were required to achieve this surface stabilization. © 2009, American Chemical Society