Journal Articles
Browse
Browsing Journal Articles by Subject "Absorption"
Now showing 1 - 20 of 49
Results Per Page
Sort Options
- ItemAnomalous structural evolution and glassy lattice in mixed‐halide hybrid perovskites(Wiley, 2022-05) Shahrokhi, S; Dubajic, M; Dai, ZZ; Bhattacharyya, S; Mole, RA; Rule, KC; Bhadbhade, MM; Tian, R; Mussakhanuly, N; Guan, X; Yin, Y; Nielsen, MP; Hu, L; Lin, CH; Chang, SLY; Wang, DY; Kabakova, IV; Conibeer, G; Bremner, S; Li, XG; Cazorla, C; Wu, THybrid halide perovskites have emerged as highly promising photovoltaic materials because of their exceptional optoelectronic properties, which are often optimized via compositional engineering like mixing halides. It is well established that hybrid perovskites undergo a series of structural phase transitions as temperature varies. In this work, the authors find that phase transitions are substantially suppressed in mixed‐halide hybrid perovskite single crystals of MAPbI3‐xBrx (MA = CH3NH3+ and x = 1 or 2) using a complementary suite of diffraction and spectroscopic techniques. Furthermore, as a general behavior, multiple crystallographic phases coexist in mixed‐halide perovskites over a wide temperature range, and a slightly distorted monoclinic phase, hitherto unreported for hybrid perovskites, is dominant at temperatures above 100 K. The anomalous structural evolution is correlated with the glassy behavior of organic cations and optical phonons in mixed‐halide perovskites. This work demonstrates the complex interplay between composition engineering and lattice dynamics in hybrid perovskites, shedding new light on their unique properties. © 2022 The Authors. Small published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
- ItemAverage and local ordering of Yb2(Ti2-xYbx)O7-x/2 ‘stuffed’ pyrochlores: the development of a robust structural model(Elsevier, 2021-10-01) Mullens, BG; Zhang, Z; Avdeev, M; Brand, HEA; Cowie, BCC; D'Angelo, AM; Múzquiz, MS; Kennedy, BJThe long-range (average) and short-range (local) structures in the Yb2(Ti2-xYbx)O7-x/2 (x = 0.00–0.67) series were studied using a combination of diffraction and spectroscopic techniques. The average structure, established from synchrotron X-ray and neutron powder diffraction data, shows the development of multiphase regions from x = 0.134 and the formation of anti-site disorder from x = 0.335. The local structure, established from X-ray absorption near-edge structure (XANES), shows a gradual evolution of short-range disorder. The crystal field splitting energy of the Ti4+ ions decreases from 2.15 to 1.91 eV with increasing Yb3+ content, reflecting the increase in coordination number from 6 to predominantly 7. Electrochemical impedance spectroscopic studies show an increase in oxygen ionic conductivity by almost a factor of 3 upon doping with small amounts of Yb3+ (x = 0.067). These results imply that the disordering across the anion and cation sublattices are different and inducing small amounts of disorder into the pyrochlore structure may lead to applications in solid-oxide fuel cells. © 2021 Elsevier Inc.
- ItemBiomedical tracer studies with AMS(Australian Institute of Physics, 1998-04) Fink, DNo abstract available
- ItemCrystal structure and optical property of complex perovskite oxynitrides ALi0.2Nb0.8O2.8N0.2, ANa0.2Nb0.8O2.8N0.2, and AMg0.2Nb0.8O2.6N0.4 (A = Sr, Ba)(Elsevier, 2017-10-01) Moon, KH; Avdeev, M; Kim, YIOxynitride type complex perovskites AM0.2Nb0.8O3−xNx (A = Sr, Ba; M = Li, Na, Mg) were newly synthesized by the solid state diffusion of Li+, Na+, or Mg2+ into the layered oxide, A5Nb4O15, with concurrent O/N substitution. Neutron and synchrotron X-ray Rietveld refinement showed that SrLi0.2Nb0.8O2.8N0.2, SrNa0.2Nb0.8O2.8N0.2, and SrMg0.2Nb0.8O2.6N0.4 had body-centered tetragonal symmetry (I4/mcm), while those with A = Ba had simple cubic symmetry (Pm ̅ m). In the tetragonal Sr-compounds, the nitrogen atoms were localized on the c-axial 4a site. However, the octahedral cations, M/Nb (M = Li, Na, Mg) were distributed randomly in all six compounds. The lattice volume of AM0.2Nb0.8O3−xNx was dependent on various factors including the type of A and the electronegativity of M. Compared to the simple perovskites, ANbO2N (A = Sr, Ba), AM0.2Nb0.8O3−xNx had wider band gaps (1.76–2.15 eV for A = Sr and 1.65–2.10 eV for A = Ba), but significantly lower sub-gap absorption. © 2017 Elsevier Inc.
- ItemDetermination of hole distribution in Sr14-xCaxCu24O41 using soft x-ray absorption spectroscopy at the Cu L3 edge.(American Physical Society, 2013-07-22) Huang, MJ; Deng, G; Chin, YY; Hu, ZW; Cheng, JG; Chou, FC; Conder, K; Zhou, JS; Pi, TW; Goodenough, JB; Lin, HJ; Chen, CTThe physical properties of Sr14-xCaxCu24O41 are determined by the hole distribution between the edge-shared CuO2 chain and the corner-shared Cu2O3 two-leg ladder, but inconsistent results on the hole distribution were obtained in various experimental works in recent decades. In this work we reinvestigate the hole distribution by soft x-ray absorption spectroscopy at the Cu L-3 edge. By comparing with the pure ladder and the pure chain systems, we can unambiguously distinguish between the hole distributions in the chain and the ladder. We have found that there are 5.3 holes in the edge-shared chain and 0.7 holes in the corner-shared ladder on average for Sr14Cu24O41. Upon Ca substitution, the holes gradually transfer from the edge-shared chain to the corner-shared ladder, and there are up to 1.21 holes in the corner-shared ladder for Sr1.8Ca12.2Cu24O41. © 2013, American Physical Society.
- ItemDinuclear complexes of europium(III) and gadolinium(III) ions with a julolidine–quinoline-based tridentate ligand(Taylor and Francis Online, 2016-06-13) Fanna, DJ; Zhang, YJ; Salih, A; Reynolds, JK; Li, FThe reaction of europium(III) or gadolinium(III) acetates with a Schiff base ligand {HL (C22H21N3O) = ((E)-9-((quinolin-8-ylimino)methyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol)} in methanol affords two dinuclear complexes which have been characterized by powder X-ray diffraction, Raman spectroscopy, scanning electron microscope–electron dispersive spectroscopy, absorption and emission spectroscopies as well as single-crystal X-ray diffraction. [Eu2L2(CH3COO)4(CH3OH)2] (1) and [Gd2L2(CH3COO)4(CH3OH)2] (2) are iso-structures, each consisting of two M : L : CH3COO : CH3OH (1 : 1 : 1 : 1) units bridged by two acetate anions with the metal center in a distorted capped square antiprismatic coordination geometry. Their vibration modes, electronic structures, and photoluminescent properties are reported. © 2016 Taylor & Francis Group
- ItemDioxo-vanadium(V), oxo-rhenium(V) and dioxo-uranium(VI) complexes with a tridentate Schiff base ligand(Royal Society of Chemistry, 2016-08-03) Zhang, YJ; Fanna, DJ; Shepherd, ND; Karatchevtseva, I; Lu, KT; Kong, L; Price, JRThe complexation of a julolidine–quinoline based tridentate ligand with three oxo-metal ions, dioxo-vanadium(V), oxo-rhenium(V) and dioxo-uranium(VI), has been investigated with four new complexes being synthesised and structurally characterised. (VO2L)·2/3H2O (1) {HL (C22H21N3O) = ((E)-9-((quinolin-8-ylimino)methyl)-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-8-ol)} has a VO2L neutral mononuclear structure with a five-fold coordinated vanadium metal centre in a distorted trigonal bipyramidal geometry. (ReOL2)2(ReCl6)·7DMF (2) [DMF = dimethylformamide] exhibits a mixed valent rhenium complex with a (ReOL2)+ cationic unit in a distorted octahedral metal coordination geometry, charge balanced with (ReCl6)2− anions. [(UO2)L(H2O)2]2·2(NO3)·HL·4H2O (3) and [(UO2)L(CH3OH)2](NO3)·CH3OH (4) both have (UO2L)+ cationic mononuclear structures with either coordinated water or methanol molecules in pentagonal bipyramidal coordination geometries for the uranium metal centres. Intra-/intermolecular interactions including hydrogen bonding and π–π interactions are common and have been discussed. In addition, optical absorption and photoluminescence properties have been investigated. © 2016 The Royal Society of Chemistry
- ItemEffect of silicon on the distribution and speciation of uranium in sunflower (Helianthus annuus)(Elsevier, 2024-10) Wang, LL; Laing, Y; Liu, S; Chen, F; Wang, JG; Chen, YL; Paterson, DJ; Kopittke, PM; Wang, YH; Liu, C; Ye, YSunflower (Helianthus annuus) can potentially be used for uranium (U) phytoremediation. However, the factors influencing the absorption of U and its subsequent distribution within plant tissues remain unclear, including the effect of silicon (Si) which is known to increase metal tolerance. Here, using hydroponics, the effect of Si on the distribution and speciation of U in sunflower was examined using synchrotron-based X–ray fluorescence and fluorescence-X-ray absorption near-edge spectroscopy. It was found that ∼88 % of U accumulates within the root regardless of treatments. Without the addition of Si, most of the U appeared to bind to epidermis within the roots, whereas in the leaves, U primarily accumulated in the veins. The addition of Si alleviated U phytotoxicity and decreased U concentration in sunflower by an average of 60 %. In the roots, Si enhanced U distribution in cell walls and impeded its entry into cells, likely due to increased callose deposition. In the leaves, Si induced the sequestration of U in trichomes. However, Si did not alter U speciation and U remained in the hexavalent form. These results provide information on U accumulation and distribution within sunflower, and suggest that Si could enhance plant growth under high U stress. © 2024 Elsevier B.V.
- ItemEffect of x-ray energy on the radiological image quality in propagation-based phase-contrast computed tomography of the breast(Society of Photo-Optical Instrumentation Engineers (SPIE), 2021-07-12) Wan, S; Arhatari, BD; Nesterets, YI; Mayo, SC; Thompson, D; Fox, J; Kumar, B; Prodanovic, Z; Häusermann, D; Maksimenko, A; Hall, CJ; Dimmock, MR; Pavlov, KM; Lockie, D; Rickard, M; Gadomkar, Z; Alaleh, A; Vafa, E; Peele, AG; Quiney, HM; Lewis, SJ; Gureyev, TE; Brennan, PC; Taba, STPurpose: Breast cancer is the most common cancer in women in developing and developed countries and is responsible for 15% of women’s cancer deaths worldwide. Conventional absorption-based breast imaging techniques lack sufficient contrast for comprehensive diagnosis. Propagation-based phase-contrast computed tomography (PB-CT) is a developing technique that exploits a more contrast-sensitive property of x-rays: x-ray refraction. X-ray absorption, refraction, and contrast-to-noise in the corresponding images depend on the x-ray energy used, for the same/fixed radiation dose. The aim of this paper is to explore the relationship between x-ray energy and radiological image quality in PB-CT imaging. Approach: Thirty-nine mastectomy samples were scanned at the imaging and medical beamline at the Australian Synchrotron. Samples were scanned at various x-ray energies of 26, 28, 30, 32, 34, and 60 keV using a Hamamatsu Flat Panel detector at the same object-to-detector distance of 6 m and mean glandular dose of 4 mGy. A total of 132 image sets were produced for analysis. Seven observers rated PB-CT images against absorption-based CT (AB-CT) images of the same samples on a five-point scale. A visual grading characteristics (VGC) study was used to determine the difference in image quality. Results: PB-CT images produced at 28, 30, 32, and 34 keV x-ray energies demonstrated statistically significant higher image quality than reference AB-CT images. The optimum x-ray energy, 30 keV, displayed the largest area under the curve ( AUCVGC ) of 0.754 (p = 0.009). This was followed by 32 keV (AUCVGC = 0.731, p ≤ 0.001), 34 keV (AUCVGC = 0.723, p ≤ 0.001), and 28 keV (AUCVGC = 0.654, p = 0.015). Conclusions: An optimum energy range (around 30 keV) in the PB-CT technique allows for higher image quality at a dose comparable to conventional mammographic techniques. This results in improved radiological image quality compared with conventional techniques, which may ultimately lead to higher diagnostic efficacy and a reduction in breast cancer mortalities.. © 2021 Society of Photo-Optical Instrumentation Engineers (SPIE).
- ItemElectronic and vibronic properties of a discotic liquid-crystal and its charge transfer complex(AIP Publishing, 2014-01-06) Haverkate, LA; Zbiri, M; Johnson, MR; Carter, EA; Kotlewski, A; Picken, SJ; Mulder, FM; Kearley, GJDiscotic liquid crystalline (DLC) charge transfer (CT) complexes combine visible light absorption and rapid charge transfer characteristics, being favorable properties for photovoltaic (PV) applications. We present a detailed study of the electronic and vibrational properties of the prototypic 1:1 mixture of discotic 2,3,6,7,10,11-hexakishexyloxytriphenylene (HAT6) and 2,4,7-trinitro-9-fluorenone (TNF). It is shown that intermolecular charge transfer occurs in the ground state of the complex: a charge delocalization of about 10−2 electron from the HAT6 core to TNF is deduced from both Raman and our previous NMR measurements [L. A. Haverkate, M. Zbiri, M. R. Johnson, B. Deme, H. J. M. de Groot, F. Lefeber, A. Kotlewski, S. J. Picken, F. M. Mulder, and G. J. Kearley, J. Phys. Chem. B116, 13098 (2012)], implying the presence of permanent dipoles at the donor-acceptor interface. A combined analysis of density functional theory calculations, resonant Raman and UV-VIS absorption measurements indicate that fast relaxation occurs in the UV region due to intramolecular vibronic coupling of HAT6 quinoidal modes with lower lying electronic states. Relatively slower relaxation in the visible region the excited CT-band of the complex is also indicated, which likely involves motions of the TNF nitro groups. The fast quinoidal relaxation process in the hot UV band of HAT6 relates to pseudo-Jahn-Teller interactions in a single benzene unit, suggesting that the underlying vibronic coupling mechanism can be generic for polyaromatic hydrocarbons. Both the presence of ground state CT dipoles and relatively slow relaxation processes in the excited CT band can be relevant concerning the design of DLC based organic PV systems. © 2014 AIP Publishing LLC.
- ItemErratum: Role of vanguard counter-potential in terahertz emission due to surface currents explicated by three-dimensional ensemble Monte Carlo simulation [Phys. Rev. B 84, 155328 (2011)](American Physical Society, 2012-04-04) Cortie, DL; Lewis, RAAfter publication of this paper, we became aware of a relevant and important reference.1 We regret that this paper was not cited in our own. 1. A. Reklaitis, J. Appl. Phys. 108, 053102 (2010).
- ItemExpanded chemistry and proton conductivity in vanadium-substituted variants of γ-Ba4Nb2O9(American Chemical Society, 2021-09-09) Brown, AJ; Schwaighofer, B; Avdeev, M; Johannessen, B; Evans, IR; Ling, CDWe have substantially expanded the chemical phase space of the hitherto unique γ-Ba4Nb2O9 type structure by designing and synthesizing stoichiometric ordered analogues γ-Ba4V1/3Ta5/3O9 and γ-Ba4V1/3Nb5/3O9 and exploring the solid-solution series γ-Ba4VxTa2–xO9 and γ-Ba4VxNb2–xO9. Undoped Ba4Ta2O9 forms a 6H-perovskite type phase, but with sufficient V doping the γ-type phase is thermodynamically preferred and possibly more stable than γ-Ba4Nb2O9, forming at a 200 °C lower synthesis temperature. This is explained by the fact that Nb5+ ions in γ-Ba4Nb2O9 simultaneously occupy 4-, 5-, and 6-coordinate sites in the oxide sublattice, which is less stable than allowing smaller V5+ to occupy the former two and larger Ta5+ to occupy the latter. The x = 1/3 phase γ-Ba4V1/3Ta5/3O9 shows greatly improved ionic conduction compared to the x = 0 phase 6H-Ba4Ta2O9. We characterized the structures of the new phases using a combination of X-ray and neutron powder diffraction. All compositions hydrate rapidly and extensively (up to 1/3 H2O per formula unit) in ambient conditions, like the parent γ-Ba4Nb2O9 phase. At lower temperatures, the ionic conduction is predominately protonic, while at higher temperatures it is likely other charge carriers make increasing contributions.© 2021 American Chemical Society
- ItemHydrogen sorption behaviour of Mg-5wt.%La alloys after the initial hydrogen absorption process(Elsevier B. V., 2022-04-29) Kim, MJ; Tan, XF; Gu, QF; McDonald, SD; Ali, Y; Matsumura, S; Nogita, KIn our earlier study, it has been shown that trace Na additions can improve the reaction kinetics of Mg–5%La (wt.%) alloys during the first absorption. However, the subsequent hydrogen desorption/absorption process of the Mg–5%La after the first absorption has not been investigated. In this study, we have investigated the hydrogen sorption behaviour of the Mg–5%La alloy after the first absorption in terms of phase evolution, and lattice expansion properties during desorption as function of temperature using in-situ synchrotron Powder X-ray Diffraction (PXRD) and in-situ High Voltage Transmission Electron Microscopy (HVTEM). Two distinct phase evolutions, a continuous phase transformation of LaH3 → LaH2 + ½ H2 (from 250 °C) and decomposition of MgH2 → Mg + H2 (between 440 and 460 °C) were identified during the desorption. It is determined that this alloy is cyclable in the absence of Mg12La intermetallic during the subsequent absorption/desorption cycling after the first hydrogen absorption. © 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd
- ItemHydrothermal crystallization of amorphous titania films deposited using low temperature atomic layer deposition(Elsevier, 2008-10-01) Mitchell, DRG; Triani, G; Zhang, ZA two stage process (atomic layer deposition, followed by hydrothermal treatment) for producing crystalline titania thin films at temperatures compatible with polymeric substrates (< 130°C) has been assessed. Titania thin films were deposited at 80°C using atomic layer deposition. They were extremely flat, uniform and almost entirely amorphous. They also contained relatively high levels of residual Cl from the precursor. After hydrothermal treatment at 120°C for 1 day, > 50% of the film had crystallized. Crystallization was complete after 10 days of hydrothermal treatment. Crystallization of the film resulted in the formation of coarse grained anatase. Residual Cl was completely expelled from the film upon crystallization. As a result of the amorphous to crystalline transformation voids formed at the crystallization front. Inward and lateral crystal growth resulted in voids being localized to the film/substrate interface and crystallite perimeters resulting in pinholing. Both these phenomena resulted in films with poor adhesion and film integrity was severely compromised. © 2008, Elsevier Ltd.
- ItemInherent variation in carbon and nitrogen isotopic assimilation in the freshwater macro-invertebrate Cherax destructor(CSIRO Publishing, 2016-01-05) Mazumder, D; Wen, L; Johansen, MP; Kobayashi, T; Saintilan, NIndividual variability in diet source selection has often been cited as the main factor for intra-specific variation of isotopic signatures among food-web consumers. We conducted a laboratory study to test how well the individual variability of the δ13C and δ15N ratios in the muscle of an omnivore consumer (yabby: Cherax destructor) corresponded to the variability of various diet types and diet combinations. We found that C. destructor muscle isotope signatures varied in concert with the composition of single-source diets, and that this variability was low. However, when fed the same proportional mixture of multiple diet sources, comparatively high isotopic variability was observed among specimens. Results suggest that a substantial component of isotopic variability in wild populations may be owing to inherent differences in uptake, absorption, and sequestration among individuals, which is distinct from behaviourally driven individualised diet selection. Considering the potential of such individual variability in assimilation to be present in many different consumer populations, we suggest further testing for a range of species and inclusion of this source of variation, for interpretation of isotopic data for trophic ecology. © CSIRO 1996-2020
- ItemAn investigation into transition metal ion binding properties of silk fibers and particles using radioisotopes(Wiley-Blackwell, 2011-03-15) Rajkhowa, R; Naik, R; Wang, L; Smith, SV; Wang, XGSilk is a structural protein fiber that is stable over a wide pH range making it attractive for use in medical and environmental applications. Variation in amino acid composition has the potential for selective binding for ions under varying conditions. Here we report on the metal ion separation potential of Mulberry and Eri silk fibers and powders over a range of pH. Highly sensitive radiotracer probes, 64Cu2+, 109Cd2+, and 57Co2+ were used to study the absorption of their respective stable metal ions Cu2+, Cd2+, and Co2+ into and from the silk sorbents. The total amount of each metal ion absorbed and time taken to reach equilibrium occurred in the following order: Cu2+ > Cd2+ > Co2+. In all cases the silk powders absorbed metal ions faster than their respective silk fibers. Intensive degumming of the fibers and powders significantly reduced the time to absorb respective metal ions and the time to reach equilibrium was reduced from hours to 5–15 min at pH 8. Once bound, 45–100% of the metal ions were released from the sorbents after exposure to pH 3 buffer for 30 min. The transition metal ion loading capacity for the silk sorbents was considerably higher than that found for commercial ion exchange resins (AG MP-50 and AG 50W-X2) under similar conditions. Interestingly, total Cu2+ bound was found to be higher than theoretically predicted values based on known specific Cu2+ binding sites (AHGGYSGY), suggesting that additional (new) sites for transition metal ion binding sites are present in silk fibers. © 2011, Wiley-Blackwell.
- ItemIon irradiation effects on metallic nanocrystals(Taylor & Francis, 2007-07) Kluth, P; Johannessen, B; Giulian, R; Schnohr, CS; Foran, GJ; Cookson, DJ; Byrne, AP; Ridgway, MCWe have investigated structural and morphological properties of metallic nanocrystals ( NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation. © 2007, Taylor & Francis Ltd.
- ItemIon-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2(American Physical Society, 2007-11) Johannessen, B; Kluth, P; Llewellyn, DJ; Foran, GJ; Cookson, DJ; Ridgway, MCElemental Cu nanoparticles embedded in SiO2 were irradiated with 5 MeV Sn3+. The nanoparticle structure was studied as a function of Sn3+ fluence by extended x-ray absorption fine structure spectroscopy, small-angle x-ray scattering, and transmission electron microscopy. Prior to irradiation, Cu nanoparticles exhibited the face-centered-cubic structure. Upon irradiation at intermediate fluences (1×1013 to 1×1014 ions/cm2), the first nearest neighbor Cu-Cu coordination number decreased, while the Debye-Waller factor, bondlength, and third cumulant of the bondlength distribution increased. In particular, at a fluence of 1×1014 ions/cm2 we argue for the presence of an amorphous Cu phase, for which we deduce the structural parameters. Low temperature annealing (insufficient for nanoparticle growth) of the amorphous Cu returned the nanoparticles to the initial preirradiation structure. At significantly higher irradiation fluences (1×1015 to 1×1016 ions/cm2), the nanoparticles were dissolved in the matrix with a Cu coordination similar to that of Cu2O. © 2007, American Physical Society
- ItemLong- and short-range structure studies of KBT-KBZ solid-solutions using synchrotron radiation(Royal Society of Chemistry, 2015-01-14) Liu, S; Blanchard, PER; Zhang, Z; Kennedy, BJ; Ling, CDThe relaxor ferroelectric K0.5Bi0.5TiO3 has been synthesised in a solid-solution series with K0.5Bi0.5ZrO3, as K0.5Bi0.5Ti1−xZrxO3. High-resolution synchrotron X-ray powder diffraction and X-ray absorption near edge structure spectroscopy were used to characterise the long-range average and local structural behaviour. Rietveld refinements against diffraction data show that a pseudocubic tetragonal region exists across the whole solid-solution series, with truly cubic symmetry only observed at x = 1 (pure KBZ). Variable-temperature diffraction data for x = 0 (pure KBT) showed a broad ferroelectric transition from tetragonal to cubic symmetry at approximately 683 K with a coexistence of both phases close to that temperature, accompanied by a marked volume contraction. Ti K-edge data showed that Zr doping has a minimal effect on Ti off-centering, and revealed no evidence for local clustering. Metal L-edges showed that Ti4+ cations remain off-centered with increasing Zr content, while Zr4+ cations approach a higher-symmetry coordination environment, most likely due to the increased size of the Zr atoms. Although there is a minimal effect on actual Ti-offsets, an effective dilution of these environments by Zr doping leads to a reduction in polar domains and a diminished ferroelectric response. © 2015 Royal Society of Chemistry
- ItemA medium-energy photoemission and ab-initio investigation of cubic yttria-stabilised zirconia(AIP Scitation, 2014-03-01) Cousland, GP; Cui, XY; Smith, AE; Stampfl, CM; Wong, L; Tayebjee, M; Yu, DH; Triani, G; Evans, PJ; Ruppender, HJ; Jang, LY; Stampfl, APJExperimental and theoretical investigations into the electronic properties and structure of cubic yttria-stabilized zirconia are presented. Medium-energy x-ray photoemission spectroscopy measurements have been carried out for material with a concentration of 8-9 mol. % yttria. Resonant photoemission spectra are obtained for a range of photon energies that traverse the L2 absorption edge for both zirconium and yttrium. Through correlation with results from density-functional theory (DFT) calculations, based on structural models proposed in the literature, we assign photoemission peaks appearing in the spectra to core lines and Auger transitions. An analysis of the core level features enables the identification of shifts in the core level energies due to different local chemical environments of the constituent atoms. In general, each core line feature can be decomposed into three contributions, with associated energy shifts. Their identification with results of DFT calculations carried out for proposed atomic structures, lends support to these structural models. The experimental results indicate a multi-atom resonant photoemission effect between nearest-neighbour oxygen and yttrium atoms. Near-edge x-ray absorption fine structure spectra for zirconium and yttrium are also presented, which correlate well with calculated Zr- and Y-4d electron partial density-of-states and with Auger electron peak area versus photon energy curve. © 2014, AIP Publishing LLC.
- «
- 1 (current)
- 2
- 3
- »