Journal Publications
This community mainly contains citations and URL's to full text content, yet where permitted, the PDF file, of the journal articles written by ANSTO authors.
Browse
Browsing Journal Publications by Subject "Acetylene"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOxidative acetylenic coupling reactions as a surface chemistry tool(2011-09-14) Ciampi, S; James, M; Darwish, N; Luais, E; Guan, B; Harper, JB; Gooding, JJA novel method to prepare redox monolayers on silicon electrodes has been developed that employs CuI-catalyzed oxidative acetylenic coupling reactions for molecular electronic type applications. As the first case study, ethynylferrocene was covalently immobilized onto an acetylene-terminated monolayer on a Si(100) surface to give a 1,3-diyne (C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C-) linked redox assembly. The derivatization process requires no protection/de-protection steps, nor activation procedures. The effect of the conjugated diyne linkage on the rate of electron transfer between tethered ferrocenyl units and the silicon electrode is benchmarked against well-established "click" products (i.e. 1,2,3-triazole linkage). The surfaces, after each step, are characterized thoroughly using X-ray reflectivity (XRR), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The coupling chemistry provides a useful strategy for functionalizing silicon surfaces and contributes to an expanding repertoire of wet chemistry routes for the functionalization of solid substrates.© 2011, Royal Society of Chemistry
- ItemSilicon (100) electrodes resistant to oxidation in aqueous solutions: an unexpected benefit of surface acetylene moieties(American Chemical Society, 2009-02-17) Ciampi, S; Eggers, PK; Le Saux, G; James, M; Harper, JB; Gooding, JJHere we report on the functionalization of alkyne-terminated alkyl monolayers on highly doped Si(100) using click" reactions to immobilize ferrocene derivatives. The reaction of hydrogen-terminated silicon surfaces with a diyne species was shown to afford very robust functional surfaces where the oxidation of the underlying substrate was negligible. Detailed characterization using X-ray photoelectron spectroscopy, X-ray reflectometry, and cyclic voltammetry demonstrated that the surface acetylenes had reacted in moderate yield to give surfaces exposing ferrocene moieties. Upon extensive exposure of the redox-active architecture to oxidative environments during preparative and characterization steps, no evidence of SiOx contaminants was shown for derivatized SAMs prepared from single-component 1,8-nonadiyne, fully acetylenylated, monolayers. An analysis of the redox behavior of the prepared Si(100) electrodes based on relevant parameters such as peak splitting and position and shape of the reduction/oxidation waves depicted a well-behaved redox architecture whose spectroscopic and electrochemical properties were not significantly altered even after prolonged cycling in aqueous media between -100 and 800 mV versus AglAgCl. The reported strategy represents an experimentally simple approach for the preparation of silicon-based electrodes where, in addition to close-to-ideal redox behavior, remarkable electrode stability can be achieved. Both the presence of a distal alkyne moiety and temperatures of formation above 100 degrees C were required to achieve this surface stabilization. © 2009, American Chemical Society