Browsing by Author "in het Panhuis, M"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemBacterial filtration using carbon nanotube/antibiotic buckypaper membranes(Hindawi Publishing Corporation, 2013-02-08) Sweetman, LJ; Alcock, LJ; McArthur, JD; Stewart, EM; Triani, G; in het Panhuis, M; Ralph, SFThe preparation of free-standing carbon nanotube “buckypaper” (BP) membranes consisting of either single-walled carbon nanotubes(SWNTs) or multi-walled carbon nanotubes (MWNTs), and the antibiotic ciprofloxacin (cipro), is reported. The electrical, mechanical and morphological properties of these membranes have been characterised and are compared to those of the corresponding containing the surfactant Triton X-100 (Trix). Analysis of scanning electron microscopic images of the surfaces of SWNT/cipro and SWNT/Trix (Trix = Triton X-100) buckypapers revealed that the diameter of their surface pores was significantly smaller than that of the corresponding materials prepared using MWNTs. Similarly, the average internal pore diameter of both SWNT buckypapers was found to be smaller than that of their MWNT counterparts, after analysis of binding isotherms derived from nitrogen adsorption/desorption measurements performed on the materials. All four buckypaper membranes examined were found to be >99% effective for removing Escherichia coli (E. coli) from aqueous suspensions. However, buckypapers containing ciprofloxacin outperformed their counterparts containing the surfactant. BothMWNT buckypapers were more effective at preventing passage of E. coli than their analogues containing SWNTs, while fluorescence microscopic examination of stained membrane surfaces demonstrated that buckypapers composed of SWNTs had greater bactericidal properties. © 2013, Luke J. Sweetman et al.
- ItemNanofiltration applications of tough MWNT buckypaper membranes containing biopolymers(Elsevier, 2017-05-01) Rashid, MHO; Triani, G; Scales, N; in het Panhuis, M; Nghiem, D; Ralph, SFThe ability of biopolymers (bovine serum albumin, lysozyme, chitosan, gellan gum and DNA) to facilitate formation of aqueous dispersions of MWNTs was investigated using a combination of absorption spectrophotometry and optical microscopy. Subsequently, self-supporting carbon nanotube membranes, known as buckypapers (BPs), were prepared by vacuum filtration of the dispersions. Microanalytical data obtained from the BPs confirmed the retention of biopolymers within their structures. Tensile test measurements performed on the BPs showed that incorporation of the biopolymers resulted in significant improvements in mechanical properties, compared to analogous BPs containing MWNTs and the low molecular mass dispersant Triton X-100. For example, MWNT/CHT BPs (CHT=chitosan) exhibited values for tensile strength, ductility, Young's modulus and toughness of 28±2MPa, 5.3±2.7%, 0.9±0.3GPa and 1.7±0.3J g−1, respectively. Each of these values are significantly greater than those obtained for MWNT/Trix BPs, prepared using a low molecular weight dispersant (6±3MPa, 1.3±0.2%, 0.6±0.3GPa and 0.10±0.06J g−1, respectively). This significant improvement in mechanical properties is attributed to the ability of the long biopolymer molecules to act as flexible bridges between the short CNTs. All BPs possessed hydrophilic surfaces, with contact angles ranging from 29±2° to 57±5°. Nitrogen gas porosimetry showed that the BPs have highly porous internal structures, while scanning electron microscopy (SEM) showed their surface morphologies have numerous pore openings. The permeability of the BPs towards water, inorganic salts, and dissolved trace organic contaminants (TrOCs), such as pharmaceuticals, personal care products, and pesticides, was investigated through filtration experiments. Of the twelve TrOCs investigated in this study, nine were rejected by more than 95% by BPs composed of MWNTs and chitosan. The latter BPs also demonstrated good rejection of both NaCl (30–55%) and MgSO4 (40–70%). © 2017 Elsevier B.V.
- ItemPeptide modification of purified gellan gum(Royal Society of Chemistry, 2014-12-10) Ferris, CJ; Stevens, LR; Gilmore, KJ; Mume, E; Greguric, I; Kirchmajer, DM; Wallace, GG; in het Panhuis, MAbstractGellan gum (GG) is an anionic polysaccharide with potential as a biopolymer for additive manufacturing (3D-bioprinting) and tissue engineering. Previous studies have shown GG to be highly cytocompatible, but lacking specific attachment sites required for anchorage-dependent cells. In this work, we modify purified-GG polymer with a short peptide containing the arginine-glycine-aspartic acid (RGD) sequence that is known to enhance integrin-mediated cell attachment. Radiolabelling of the peptide was used in optimisation of the conjugation procedure to achieve an overall efficiency of 40%. The purification of divalent cations from commercial GG samples was found to be critical for successful conjugation. Rheological studies revealed that the peptide coupling did not prevent gelation behaviour. C2C12 cells showed improved attachment on the surface of and encapsulated within RGD-GG hydrogels, differentiating to multinucleated myofibers after 5–7 days. PC12 cells showed minimal interactions with both GG and RGD-GG, with formation of cell clusters and impedance of terminal differentiation and neurite extension. © 2015 Royal Society of Chemistry
- ItemSynthesis, properties, water and solute permeability of MWNT buckypapers(Elsevier, 2014-04-15) Rashid, MHO; Sweetman, LJ; Alcock, LJ; Wise, A; Nghiem, LD; Triani, G; in het Panhuis, M; Ralph, STHigh power tip sonication was used to prepare dispersions containing multi-walled carbon nanotubes (MWNTs), or multi-walled carbon nanotubes functionalised with carboxylic acid groups (MWNT-COOH) or amine groups (MWNT-NH2). The dispersion of carbon nanotubes was facilitated by the presence of a surfactant (Triton X-100) or various macrocyclic ligands (derivatised porphyrin, phthalocyanine or calixarene) in the solution. Vacuum filtration of the dispersions afforded self-supporting membranes known as buckypapers. Microanalysis provided evidence for retention of the surfactant or macrocyclic ligands in the buckypapers, which were also characterised by measurement of their electrical conductivities (24±16 to 58±11 S/cm), contact angles (28±1° to 55±10°) and mechanical properties (tensile strengths varied between 1.6±0.7 and 13±2 MPa). The surface and internal morphologies of the buckypapers were similar to each other, which correlates with the lack of variation observed in their permeability's towards water. The ability of selected buckypapers to remove trace organic contaminants (TrOCs) was also examined. A buckypaper prepared using Triton X-100 as the dispersant showed more than 80% removal efficiency for 11 out of the 12 TrOCs investigated in this study. On the other hand, a buckypaper prepared from MWNTs and phthalocyaninetetrasulfonic acid exhibited lower removal efficiencies for these TrOCs, possibly due to their smaller specific surface area. © 2014, Elsevier B.V.