Browsing by Author "Zhu, H"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEffects of heat treatment on microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy(Materials Australian and The Australian Ceramic Society, 2022-06-01) Qiu, Z; Wu, B; Zhu, H; Wang, Z; Wexler, D; Van Duin, S; Pan, Z; Li, HHastelloy C276 is a Ni-Cr-Mo based superalloy which has a high potential for application in high temperature and extreme corrosive environment due to its high corrosion resistance and excellent mechanical properties. In this research, the wire arc additive manufacturing (WAAM) process was successfully used to fabricate the defect-free Hastelloy C276 component. The microstructure of the component was characterized using optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction, the mechanical properties were evaluated via tensile and hardness tests. The as-deposited component exhibited anisotropy on both microstructure and mechanical properties. The influences of solid solution heat treatment and stress relief heat treatment on microstructure and mechanical properties were also investigated. It was found that both microstructure and mechanical properties were significantly modified after heat treatment. Preliminary creep tests indicted the texture has a strong influence on the creep performance of the component.
- ItemPolarized neutron reflectometry of epitaxial Fe[0.25 + x] Pt[0.75 ā x] layers.(Institute of Electrical and Electronics Engineers (IEEE), 2018-04-27) Mankey, GJ; Causer, GL; Cortie, DL; Wang, X; Zhu, H; Lonescu, M; Klose, FEpitaxial Fe[0.25 + x]Pt[0.75 - x] layers can be either antiferromagnetic (AF) or ferromagnetic (FM) depending on the degree of chemical ordering controlled by the deposition temperature. Our neutron diffraction studies were the first to study AF phase transitions in these thin films [1] and we have also shown using PNR that a mixed AF-FM film is exchange biased with itself [2]. In AF-FM exchange-biased superlattices with a modulated chemical order parameter, PNR shows the magnetization can be modulated through the film thickness with no composition modulations [3]. Our recent results reveal that He+ ion bombardment and annealing can be applied toward controlling magnetic phases in epitaxial Fe [0.25] Pt [0.75] layers [4]. Ā© Copyright 2024 IEEE - All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies.