Browsing by Author "Zhang, S"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAuthor Correction: A one-third magnetization plateau phase as evidence for the Kitaev interaction in a honeycomb-lattice antiferromagnet(Springer Nature, 2023-09-10) Shangguan, Y; Bao, S; Dong, ZY; Xi, N; Gao, YP; Ma, Z; Wang, W; Qi, Z; Zhang, S; Huang, Z; Liao, J; Zhao, X; Zhang, B; Cheng, S; Xu, H; Yu, DH; Mole, RA; Murai, N; Ohira-Kawamura, S; He, LH; Hao, J; Yan, QB; Song, F; Li, W; Yu, SL; Li, JX; Wen, JSCorrection to: Nature Physics, published online 25 September 2023. In the version of the article initially published, the affiliation of Zhen Ma, now reading School of Materials Science and Engineering, Hubei Normal University, Huangshi, China, appeared incorrectly. This has been updated in the HTML and PDF versions of the article. n the version of the article initially published, the affiliation of Zhen Ma, now reading School of Materials Science and Engineering, Hubei Normal University, Huangshi, China, appeared incorrectly. This has been updated in the HTML and PDF versions of the article. © 2024 Springer Nature Limited.
- ItemEnhancing the reaction kinetics and structural stability of high-voltage LiCoO 2 via polyanionic species anchoring(Royal Society of Chemistry (RSC), 2024-05-16) Zheng, W; Liang, GM; Guo, H; Li, JX; Zou, JS; Yuwono, JA; Shu, H; Zhang, S; Peterson, VK; Johannessen, B; Thomsen, L; Hu, WB; Guo, ZPIncreasing the charging voltage to 4.6 V directly enhances battery capacity and energy density of LiCoO2 cathodes for lithium-ion batteries. However, issues of the activated harmful phase evolution and surface instability in high-voltage LiCoO2 lead to dramatic battery capacity decay. Herein, polyanionic PO43− species have been successfully anchored at the surface of LiCoO2 materials, achieving superior battery performance. The polyanionic species acting as micro funnels at the material surface, could expand LiCoO2 surface lattice spacing by 10%, contributing to enhanced Li diffusion kinetics and consequent excellent rate performance of 164 mA h g−1 at 20C (1C = 274 mA g−1). Crucially, polyanionic species with high electronegativity could stabilize surface oxygen at high voltage by reducing O 2p and Co 3d orbital hybridization, thus suppressing surface Co migration and harmful H1–3 phase formation and leading to superior cycling stability with 84% capacity retention at 1C after 300 cycles. Furthermore, pouch cells containing modified LiCoO2 and Li metal electrodes deliver an ultra-high energy density of 513 W h kg−1 under high loadings of 32 mg cm−2. This work provides insightful directions for modifying the material surface structure to obtain high-energy-density cathodes with high-rate performance and long service life. © Royal Society of Chemistry 2024.
- ItemSteels and intermetallics under extreme conditions(Australian Institute of Physics, 2016-02-02) Liss, KD; Dippenaar, RJ; Akita, K; Funakoshi, K; Reid, M; Suzuki, H; Shobu, T; Higo, Y; Saitoh, H; Zhang, S; Tomato, YMaterials are being designed and engineered for ever superior mechanical and operational properties, such as steels for lighter cars and energy-absorbing behaviour in an accident, and titanium aluminides for lighter airplane turbine blades. The manufacturing of such materials may involve processes at extreme conditions, under high pressure or high temperature. Examples are high-pressure torsion and near net-shape forging. Therefore, it becomes eminently important to know and understand the phase diagrams of such materials at extreme conditions. Structural changes may open processing windows, while elevated mechanical properties are conserved under less extreme conditions. Here, we present first phase diagram studies on high-manganese steels and on titanium aluminides by in-situ synchrotron X-ray diffraction in a large-volume cell.