Browsing by Author "Zhang, JC"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCooling field tuned magnetic phase transition and exchange bias-like effect in Y0.9Pr0.1CrO3(AIP Publishing, 2015-09-11) Deng, DM; Zheng, JS; Yu, DH; Wang, BM; Sun, DH; Avdeev, M; Feng, Z; Jing, C; Lu, B; Ren, W; Cao, SX; Zhang, JCCooling magnetic field dependence of magnetic phase transition has been observed in Y0.9Pr0.1CrO3. GzFx order (spin structure of PrCrO3) is dominant after zero field cooling (ZFC), whereas GxFz order (spin structure of YCrO3) is dominant after cooling under a field higher than 100 Oe. Positive/negative exchange bias-like effect, with large vertical shift and small horizontal shift, has been observed after FC/ZFC process. The vertical shift can be attributed to the frozen ordered Pr3+ and Cr3+ spins in magnetic domains, because of the strong coupling between Pr3+ and Cr3+ sublattices; while the horizontal shift is a result of the pinning of spins at the interfaces. The frozen structure is generated by the field used for the measurement of the initial magnetization curve of M(H) for the ZFC cooled sample, while it is generated by the cooling field for the sample cooled under a cooling field higher than 100 Oe. © 2015 AIP Publishing LLC.
- ItemTuning the magnetic anisotropy via Mn substitution in single crystal Co4Nb2O9(Elsevier, 2019-01-01) Yu, YS; Deng, GC; Cao, YM; McIntyre, GJ; Li, RB; Yuan, N; Feng, ZJ; Ge, JY; Zhang, JC; Cao, SXBy using the optical floating-zone technique to grow a series of high-quality Co4-xMnxNb2O9 single crystals, the effect of Mn doping on the magnetic anisotropy and spin-flop is investigated. The antiferromagnetic phase transition and spin-flop transition for these samples (x ≤ 3.9) are similar to those in the parent phase of Co4Nb2O9, revealing that Co2+ ions in Co4-xMnxNb2O9 possess a strong single-ion anisotropy. The critical doping content, above which the magnetic anisotropy changes from easy-plane to easy-axis, has been identified as x = 3.95 with an additional kink observed in the magnetization curve below the N é el temperature. A spin-flop transition is reported for the first time in Mn4Nb2O9 at a field of 10.9 T at 2 K. © 2018 Elsevier Ltd and Techna Group S.r.l.