Browsing by Author "Yu, CY"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA colossal barocaloric effect induced by the creation of a high-pressure phase(Royal Society of Chemistry (RSC), 2023-01-13) Zhang, Z; Jiang, X; Hattori, T; Xu, X; Li, M; Yu, CY; Zhang, Z; Yu, D; Mole, RA; Yano, SI; Chen, J; He, LH; Wang, CW; Wang, H; Li, B; Zhang, ZDAs a promising environment-friendly alternative to current vapor-compression refrigeration, solid-state refrigeration based on the barocaloric effect has been attracting worldwide attention. Generally, both phases in which a barocaloric effect occurs are present at ambient pressure. Here, instead, we demonstrate that KPF6 exhibits a colossal barocaloric effect due to the creation of a high-pressure rhombohedral phase. The phase diagram is constructed based on pressure-dependent calorimetric, Raman scattering, and neutron diffraction measurements. The present study is expected to provide an alternative routine to colossal barocaloric effects through the creation of a high-pressure phase. © Royal Society of Chemistry 2024.
- ItemThermal batteries based on inverse barocaloric effects(Science Advances, 2023-02) Zhang, Z; Li, K; Lin, SC; Song, R; Yu, DH; Wang, Y; Wang, JF; Kawaguchi, S; Zhang, Z; Yu, CY; Li, XD; Chen, J; He, LH; Mole, RA; Yuan, B; Ren, QY; Qian, K; Cai, ZL; Yu, JG; Wang, MC; Zhao, CY; Tong, X; Zhang, ZD; Li, BTo harvest and reuse low-temperature waste heat, we propose and realize an emergent concept-barocaloric thermal batteries based on the large inverse barocaloric effect of ammonium thiocyanate (NH4SCN). Thermal charging is initialized upon pressurization through an order-to-disorder phase transition, and the discharging of 43 J g-1 takes place at depressurization, which is 11 times more than the input mechanical energy. The thermodynamic equilibrium nature of the pressure-restrained heat-carrying phase guarantees stable long-duration storage. The barocaloric thermal batteries reinforced by their solid microscopic mechanism are expected to substantially advance the ability to take advantage of waste heat. Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).