Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yao, H"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Hydrogen storage performance and phase transformations in as-cast and extruded Mg-Ni-Gd-Y-Zn-Cu alloys
    (Elsevier, 2023-04-18) Yao, H; Zeng, G; Tan, XF; Gu, QF; Nogita, K; Guo, J; Li, Q
    Thermal-mechanical processing of magnesium-based materials is an effective method to tailor the hydrogen storage performance. In this study, Mg-Ni-Gd-Y-Zn-Cu alloys were prepared by Direct Chill (DC) casting, with and without extrusion process. The influences of microstructure evolution, introduced by DC casting and thermal-mechanical processing, on the hydrogen storage performance of Mg-Ni-Gd-Y-Zn-Cu alloys were comprehensively explored, using analytical electron microscopy and in-situ synchrotron powder X-ray diffraction. The result shows that the extruded alloy yields higher hydrogen absorption capacity and faster hydrogen ab/desorption kinetics. As subjected to extrusion processing, the α-Mg grains in the microstructure were significantly refined and a large number of 14H type long-period stacking ordered (LPSO) phases appeared on the α-Mg matrix. After activation, there were more nanosized Gd hydride/Mg2Ni intermetallics and finer chips. These modifications synergistically enhance the hydrogen storage properties. The findings have implications for the alloy design and manufacturing of magnesium-based hydrogen storage materials with the advantages of rapid mass production and anti-oxidation. © 2023 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback