Browsing by Author "Yamada, I"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemCharge-order melting in charge-disproportionated perovskite CeCu3Fe4O12(Americal Chemical Society, 2014-10-21) Yamada, I; Etani, H; Hayashi, N; Mizumaki, M; Ueda, S; Abe, H; Liss, KD; Studer, AJ; Ozaki, T; Mori, S; Takahashi, R; Irifune, TA novel quadruple perovskite oxide CeCu3Fe4O12 has been synthesized under high-pressure and high-temperature conditions of 15 GPa and 1473 K. (57)Fe Mössbauer spectroscopy displays a charge disproportionation transition of 4Fe(3.5+) → 3Fe(3+) + Fe(5+) below ∼270 K, whereas hard X-ray photoemission and soft X-ray absorption spectroscopy measurements confirm that the Ce and Cu valences are retained at approximately +4 and +2, respectively, over the entire temperature range measured. Electron and X-ray diffraction studies reveal that the body-centered cubic symmetry (space group Im3̅, No. 204) is retained at temperatures as low as 100 K, indicating the absence of any types of charge-ordering in the charge-disproportionated CeCu3Fe4O12 phase. The magnetic susceptibility and neutron powder diffraction data illustrate that the antiferromagnetic ordering of Fe ions is predominant in the charge-disproportionated CeCu3Fe4O12 phase. These findings suggest that CeCu3Fe4O12 undergoes a new type of electronic phase in the ACu3Fe4O12 series and that the melting of the charge-ordering in CeCu3Fe4O12 is caused by the substantial decrease in the Fe valence and the resulting large deviation from the ideal abundance ratio of Fe(3+):Fe(5+) = 1:1 for rock-salt-type charge-ordering. © 2014, American Chemical Society.