Browsing by Author "Wu, XH"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAgricultural origins on the Anatolian plateau(Proceedings of the National Academy of Sciences, 2018-03-19) Baird, D; Fairbairn, AS; Jenkins, E; Martin, L; Middleton, C; Pearson, J; Asouti, E; Edwards, Y; Kabukcu, C; Mustafaoğlu, G; Russell, N; Bar-Yosef, O; Jacobsen, GE; Wu, XH; Baker, A; Elliott, SSignificance We demonstrate that the initial spread of farming outside of the area of its first appearance in the Fertile Crescent of Southwest Asia, into Central Anatolia, involved adoption of cultivars by indigenous foragers and contemporary experimentation in animal herding of local species. This represents a rare clear-cut instance of forager adoption and sustained low-level food production. We have also demonstrated that farming uptake was not uniform, with some forager communities rejecting it despite proximity to early farming communities. We also show that adoption of small-scale cultivation could still have significant social consequences for the communities concerned. The evidence suggests forager adoption of cultivation and initiation of herding was not necessarily motivated by simple economic concerns of increasing levels of food production and security. Abstract This paper explores the explanations for, and consequences of, the early appearance of food production outside the Fertile Crescent of Southwest Asia, where it originated in the 10th/9th millennia cal BC. We present evidence that cultivation appeared in Central Anatolia through adoption by indigenous foragers in the mid ninth millennium cal BC, but also demonstrate that uptake was not uniform, and that some communities chose to actively disregard cultivation. Adoption of cultivation was accompanied by experimentation with sheep/goat herding in a system of low-level food production that was integrated into foraging practices rather than used to replace them. Furthermore, rather than being a short-lived transitional state, low-level food production formed part of a subsistence strategy that lasted for several centuries, although its adoption had significant long-term social consequences for the adopting community at Boncuklu. Material continuities suggest that Boncuklu’s community was ancestral to that seen at the much larger settlement of Çatalhöyük East from 7100 cal BC, by which time a modest involvement with food production had been transformed into a major commitment to mixed farming, allowing the sustenance of a very large sedentary community. This evidence from Central Anatolia illustrates that polarized positions explaining the early spread of farming, opposing indigenous adoption to farmer colonization, are unsuited to understanding local sequences of subsistence and related social change. We go beyond identifying the mechanisms for the spread of farming by investigating the shorter- and longer-term implications of rejecting or adopting farming practices. © 2025 National Academy of Sciences. All rights reserved.
- ItemIn operando‐formed interface between silver and perovskite oxide for efficient electroreduction of carbon dioxide to carbon monoxide(Wiley, 2023-04) Wu, XH; Guo, Y; Gu, Y; Xie, F; Li, M; Hu, Z; Lin, HJ; Pao, CW; Huang, YC; Dong, CL; Peterson, VK; Ran, R; Zhou, W; Shao, ZPElectrochemical carbon dioxide (CO2) reduction (ECR) is a promising technology to produce valuable fuels and feedstocks from CO2. Despite large efforts to develop ECR catalysts, the investigation of the catalytic performance and electrochemical behavior of complex metal oxides, especially perovskite oxides, is rarely reported. Here, the inorganic perovskite oxide Ag‐doped (La0.8Sr0.2)0.95Ag0.05MnO3–δ (LSA0.05M) is reported as an efficient electrocatalyst for ECR to CO for the first time, which exhibits a Faradaic efficiency (FE) of 84.3%, a remarkable mass activity of 75 A g−1 (normalized to the mass of Ag), and stability of 130 h at a moderate overpotential of 0.79 V. The LSA0.05M catalyst experiences structure reconstruction during ECR, creating the in operando‐formed interface between the perovskite and the evolved Ag phase. The evolved Ag is uniformly distributed with a small particle size on the perovskite surface. Theoretical calculations indicate the reconstruction of LSA0.05M during ECR and reveal that the perovskite–Ag interface provides adsorption sites for CO2 and accelerates the desorption of the *CO intermediate to enhance ECR. This study presents a novel high‐performance perovskite catalyst for ECR and may inspire the future design of electrocatalysts via the in operando formation of metal–metal oxide interfaces. © 2022 The Authors. Carbon Energy published by Wenzhou University and John Wiley & Sons - Open Access CC BY 4.0
- ItemThe origin of solvent deprotonation in LiI‐added aprotic electrolytes for Li‐O2 batteries(Wiley, 2023-03-07) Wang, AP; Wu, XH; Zou, Z; Qiao, Y; Wang, D; Xing, L; Chen, Y; Lin, Y; Avdeev, M; Shi, SQLiI and LiBr have been employed as soluble redox mediators (RMs) in electrolytes to address the sluggish oxygen evolution reaction kinetics during charging in aprotic Li‐O2 batteries. Compared to LiBr, LiI exhibits a redox potential closer to the theoretical one of discharge products, indicating a higher energy efficiency. However, the reason for the occurrence of solvent deprotonation in LiI‐added electrolytes remains unclear. Here, by combining ab initio calculations and experimental validation, we find that it is the nucleophile that triggers the solvent deprotonation and LiOH formation via nucleophilic attack, rather than the increased solvent acidity or the elongated C−H bond as previously suggested. As a comparison, the formation of in LiBr‐added electrolytes is found to be thermodynamically unfavorable, explaining the absence of LiOH formation. These findings provide important insight into the solvent deprotonation and pave the way for the practical application of LiI RM in aprotic Li‐O2 batteries. © 1999-2024 John Wiley & Sons, Inc or related companies.
- ItemThe origin of solvent deprotonation in LiI‐added aprotic electrolytes for Li‐O2 batteries(Wiley, 2023-03-27) Wang, AP; Wu, XH; Zou, Z; Qiao, Y; Wang, D; Xing, L; Chen, Y; Lin, Y; Avdeev, M; Shi, SQLiI and LiBr have been employed as soluble redox mediators (RMs) in electrolytes to address the sluggish oxygen evolution reaction kinetics during charging in aprotic Li‐O2 batteries. Compared to LiBr, LiI exhibits a redox potential closer to the theoretical one of discharge products, indicating a higher energy efficiency. However, the reason for the occurrence of solvent deprotonation in LiI‐added electrolytes remains unclear. Here, by combining ab initio calculations and experimental validation, we find that it is the nucleophile that triggers the solvent deprotonation and LiOH formation via nucleophilic attack, rather than the increased solvent acidity or the elongated C−H bond as previously suggested. As a comparison, the formation of in LiBr‐added electrolytes is found to be thermodynamically unfavorable, explaining the absence of LiOH formation. These findings provide important insight into the solvent deprotonation and pave the way for the practical application of LiI RM in aprotic Li‐O2 batteries. © 1999-2024 John Wiley & Sons, Inc