Browsing by Author "Wu, S"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBioaugmentation with Acidithiobacillus species accelerates mineral weathering and formation of secondary mineral cements for hardpan development in sulfidic Pb-Zn tailings(Elsevier, 2021-06) Liu, Y; Wu, S; Southam, G; Chan, TS; Lu, YR; Paterson, DJ; Huang, LThe development of hardpan caps has great potential in rehabilitating sulfidic and metallic tailings, which may be accelerated by using exogenous Acidithiobacillus species. The present study aims to establish a bioaugmentation process with exogenous Acidithiobacillus species for accelerating the weathering of sulfidic minerals and formation of secondary mineral gels as precursors for hardpan structure development in a microcosm experiment. Exogenous Acidithiobacillus thiooxidans (ATCC 19377) and A. ferrooxidans (DSM 14882) were inoculated in a sulfidic Pb-Zn tailing containing negligible indigenous Acidithiobacillus species for accelerating the weathering of pyrite and metal sulfides. Microspectroscopic analysis revealed that the weathering of pyrite and biotite-like minerals was rapidly accelerated by exogenous Acidithiobacillus species, leading to the formation of secondary jarosite-like mineral gels and cemented profile in the tailings. Meanwhile, approximately 28% Zn liberated from Zn-rich minerals undergoing weathering was observed to be re-immobilized by Fe-rich secondary minerals such as jarosite-like mineral. Moreover, Pb-bearing minerals mostly remained undissolved, but approximately 30% Pb was immobilized by secondary Fe-rich minerals. The present findings revealed the critical role of exogenous Acidithiobacillus species in accelerating the precursory process of mineral weathering and secondary mineral formation for hardpan structure development in sulfidic Pb-Zn tailings. © 2020 Elsevier B.V.
- ItemDisorder-induced spin-liquid-like behavior in kagome-lattice compounds(American Physical Society (APS), 2020-12-15) Ma, Z; Dong, ZY; Wu, S; Zhu, Y; Bao, S; Cai, Z; Wang, W; Shangguan, Y; Wang, J; Ran, K; Yu, DH; Deng, GC; Mole, RA; Li, HF; Yu, SL; Li, JX; Wen, JSQuantum spin liquids (QSLs) are an exotic state of matter that is subject to extensive research. However, the relationship between the ubiquitous disorder and the QSL behaviors is still unclear. Here, by performing comparative experimental studies on two kagomé-lattice QSL candidates, Tm3Sb3Zn2O14 and Tm3Sb3Mg2O14, which are isostructural to each other but with strong and weak structural disorder, respectively, we show unambiguously that the disorder can induce spin-liquid-like features. In particular, both compounds show dominant antiferromagnetic interactions with a Curie-Weiss temperature of -17.4 and -28.7 K for Tm3Sb3Zn2O14 and Tm3Sb3Mg2O14, respectively, but remain disordered down to about 0.05 K. Specific-heat results suggest the presence of gapless magnetic excitations characterized by a residual linear term. Magnetic excitation spectra obtained by inelastic neutron scattering (INS) at low temperatures display broad continua. All these observations are consistent with those of a QSL. However, we find in Tm3Sb3Zn2O14, which has strong disorder resulting from the random mixing of the magnetic Tm3+ and nonmagnetic Zn2+, that the low-energy magnetic excitations observed in the specific-heat and INS measurements are substantially enhanced compared to those of Tm3Sb3Mg2O14, which has much less disorder. We believe that the effective spins of the Tm3+ ions in the Zn2+/Mg2+ sites give rise to the low-energy magnetic excitations, and the amount of the occupancy determines the excitation strength. These results provide direct evidence of the mimicry of a QSL caused by disorder. ©2020 American Physical Society.