Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  • Communities & Collections
  • All of ANSTO Publications Online
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Witter, RC"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Field observations of erosion, deposition, and tsunami flow characteristics on the Sendai Coastal Plain after the March 2011, Tohoku-oki Tsunami, Japan
    (American Geophysical Union, 2011-11-05) Richmond, BM; Goto, K; Fujino, S; Nishimura, Y; Sugawara, D; Tappin, DR; Witter, RC; Jaffe, BE; Chagué-Goff, C; Szczuciński, W; Yulianto, E; Goff, JR
    Historical and instrumental data show that the Pacific coast of Mexico has been exposed to destructive tsunamis over at least the past 500 years. This coast is also affected by hurricanes generated in the eastern Pacific. The great 1985 Mexico earthquake and its aftershock generated tsunamis that affected the Ixtapa-Zihuatanejo and Michoacán coast. The purpose of our study was two-fold, a) to determine whether we could distinguish storm from tsunami deposits, and b) whether tsunami deposits from historical events are preserved in the tropical environments of the Ixtapa-Zihuatanejo coast. Two anomalous sand units in the Ixtapa estuary are interpreted as the result of high-energy marine inundation events that occurred in the last century. Several lines of evidence using a multi-proxy approach (historical studies, interviews with local witnesses, geomorphological and geological surveys, coring and trenching, and laboratory analyses including grain size, micropaleontology, geochemistry, magnetic susceptibility and radiometric dating) indicate the occurrence of two tsunamis that we link to local events: the 1985 Mexico and possibly the 1979 Petatlan earthquakes. We thereby provide the first onshore geological evidence of historical tsunamis on the Pacific coast of Mexico. © American Geophysical Union
  • No Thumbnail Available
    Item
    Sedimentary and foraminiferal evidence of the 2011 Tōhoku-oki tsunami on the Sendai coastal plain, Japan
    (Elsevier B.V., 2012-12-30) Pilarczyk, JE; Horton, BP; Witter, RC; Vane, CH; Chagué-Goff, C; Goff, JR
    The 2011 Tōhoku-oki megathrust earthquake (Mw 9.0) generated a tsunami that reached the Sendai coastal plain with flow heights of ~ 2 to 11 m above TP (Tokyo Peil). We examined the tsunami deposit exposed in 14 shallow trenches along a ~ 4.5‐km transect perpendicular to the coast. We primarily document the stratigraphical, sedimentological, foraminiferal and geochemical characteristics of the Tōhoku-oki tsunami deposit and perform a preliminary comparison with sediments deposited by the Jōgan tsunami of A.D. 869. In the coastal forest and rice fields inundated by the Tōhoku-oki tsunami, a poorly sorted, dark brown soil is buried by a poorly sorted, brown, medium-grained sand deposit. In some trenches located more than 1.2 km inland, the sand is capped by a thin muddy-sand layer. The tsunami deposit, although highly variable in thickness, is generally thickest (25 cm) near the coastal dune and thins to less than 5 mm at ~ 4.5 km inland. The tsunami deposit was discriminated from the underlying soil by the appearance of recent and fossil foraminifera and a pronounced increase in grain size that fined upward and landward. The recent foraminifera preserved in the sandy facies of the deposit are rare and showed evidence of prolonged subaerial exposure (e.g. pitting, corrosion, fragmentation). Recent foraminifera likely originated from coastal dune and beach sediments that were breached by the tsunami. Calcified and sediment in-filled, fossil foraminifera are abundant and were eroded from sedimentary units and transported by fluvial or wave activity to Sendai Bay. Trends associated with test size (e.g. decreasing concentration of large test sizes with distance inland) are in agreement with grain size data. At two locations a decrease in total organic carbon and an increase in δ13C were found in the tsunami sand compared with the underlying soil, supporting a beach to intertidal origin for the upper unit. © 2020 Elsevier B.V.

ANSTO Publications Online software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback