Browsing by Author "Williams, ML"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Item15th International Conference on Accelerator Mass Spectrometry(Australian Nuclear Science and Technology Organisation, 2021-11-15) Bertuch, F; Child, DP; Fink, D; Fülöp, RH; Hotchkis, MAC; Hua, Q; Jacobsen, GE; Jenkinson, A; Levchenko, VA; Simon, KJ; Smith, AM; Wilcken, KM; Williams, AA; Williams, ML; Yang, B; Fallon, SJ; Wallner, TOn behalf of the AMS-15 Organising committee, we would like to thank you for attending the 15th International Conference on Accelerator Mass Spectrometry. Held as an online event for the first time, the 2021 conference attracted over 300 attendees with presentations delivered by colleagues and professionals from around the globe.Applications of AMS to the world’s most pressing problems/questions: A-1 : Earth’s dynamic climate palaeoclimate studies, human impacts on climate, data for climate modelling. A-2 : Water resource sustainability groundwater dating, hydrology, water quality and management A-3 : Living landscapes soil production, carbon storage, erosion, sediment transport, geomorphology. A-4 : Catastrophic natural events volcanoes, cyclones, earthquakes, tsunamis, space weather, mass extinctions. A-5 : Advancing human health metabolic and bio-kinetic studies, bomb-pulse dating, diagnostics and bio-tracing. A-6 : Challenges of the nuclear age nuclear safeguards, nuclear forensics, nuclear waste management, nuclear site monitoring, impacts of nuclear accidents. A-7 :Understanding the human story archaeology, human evolution and migration, history, art and cultural heritage A-8 : Understanding the cosmos fundamental physics, nuclear astrophysics, nuclear physics AMS Research and Development: T-1 : Novel AMS systems, components and techniques T-2 : Suppression of isobars and other interferences T-3 : Ion sourcery T-4 : New AMS isotopes T-5 : Advances in sample preparation T-6 : Data quality and management T-7 : Facility Reports (Poster Presentation only)
- ItemAchieving the ultimate sensitivity in Accelerator Mass Spectrometry of high mass isotopes(Australian National University, 2019-09-09) Hotchkis, MAC; Child, DP; Williams, ML; Wallner, A; Froehlich, MB; Koll, DThe VEGA AMS system at ANSTO, based on a 1MV tandem accelerator, was custom-designed to achieve the highest possible sensitivity for high mass isotopes. It incorporates multiple medium-resolving power analysing elements: one magnetic element for the injected negative ions, followed by magnetic, electrostatic and second magnetic elements for positive ions after acceleration. This design, with mass and energy resolving powers in the range 500 to 1000, separates isotopes and suppresses backgrounds that may originate from a variety of ion species. The gas stripper in the high-voltage terminal is key both to system efficiency and to background suppression. Helium gas stripping is used, providing around 40% ion yield to the most abundant charge state (3+). The stripper pressure must be sufficient to break up all molecules while minimising the scattering angle of the ions as they undergo charge-changing collisions. Our recent work has demonstrated that the need for production of negative molecular ions in AMS of actinides is not such a barrier to high efficiency: the VEGA sputter ion source can achieve greater than 1% efficiency for production of plutonium oxide negative ions and so overall sensitivity to a few hundred atoms in a sample is possible. We are involved in a number of projects requiring high sensitivity and low backgrounds. Examples include the detection of 244Pu of extraterrestrial origin in deep oceanic ferromanganese crusts; radioecology of plutonium in the environment of former nuclear test sites; detection of nuclear signatures for nuclear safeguards and forensics; use of Pu in global fallout as a chrono-marker in environmental studies; measurement of platinum-group-element isotope ratios in meteorites; evaluation of the radio-purity of materials for use in dark matter searches. Each of these projects presents their own particular challenges. In some cases, sensitivity is limited by background from scattered ions of species other than the one of interest. In other situations, cross-contamination between samples, in the sample prep lab or ion source, limits sensitivity. Other projects or previous uses of laboratories may leave residual contamination. For stable and very long-lived species, such as PGEs and major uranium isotopes, the ubiquity of those species at low levels in almost all materials sets limits. © The Authors.
- ItemActinides AMS on the VEGA accelerator(Elsevier B. V., 2019-01-01) Hotchkis, MAC; Child, DP; Froehlich, MB; Wallner, A; Wilcken, KM; Williams, MLThe VEGA 1MV accelerator at ANSTO is designed to be a highly versatile AMS instrument. In this paper we focus on describing those aspects of the system that are designed to optimise its performance for actinides isotopic analysis, in particular the implementation of fast isotope cycling and multiple isotope detection methods to enable isotope detection across a wide range of rates and currents. Charge state yields are reported in the energy range from 0.3 to 1.0 MeV with helium gas stripping, showing that the highest yield for the 3+ charge state occurs around 1 MeV and exceeds 40%. Accuracy and precision for uranium isotope ratios are shown to approach 1% over a wide range of concentrations and isotope ratios. The ionisation efficiency for plutonium is shown to exceed 3%, leading to overall detection efficiency over 1%. In the absence of background, this leads to sub-attogram detection limits for several Pu isotopes including 244Pu. Crown Copyright © 2018 Published by Elsevier B.V.
- ItemHigh sensitivity analysis of plutonium isotopes in environmental samples using accelerator mass spectrometry (AMS)(Royal Society of Chemistry, 2008-02-28) Child, DP; Hotchkis, MAC; Williams, MLThis article presents a methodology for the determination of the concentration and isotopic ratio of plutonium occurring at femtogram levels in environmental matrices such as soils and sediments by accelerator mass spectrometry (AMS). Results on analyses of a number of reference materials ( IAEA-375, IAEA-135, IAEA-300, IAEA-327, NIST 4350, NIST 4353b) are presented as validation of the method in reproducibly measuring the plutonium isotopic ratio Pu-240 : Pu-239 in a variety of environmental sample matrices. © 2008, Royal Society of Chemistry