Browsing by Author "Ware, RE"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Item[18F]-Flumazenil: a γ-aminobutyric acid A–specific PET radiotracer for the localisation of drug resistant temporal lobe epilepsy(Society of Nuclear Medicine and Molecular Imaging, 2013-07-15) Vivash, L; Grégoire, MC; Lau, EW; Ware, RE; Binns, D; Roselt, P; Bouilleret, V; Myers, DE; Cook, MJ; Hicks, RJ; O’Brien, TJStudies report that 11C-flumazenil (FMZ) PET more specifically localizes the epileptogenic zone in patients with medically refractory focal epilepsy than 18F-FDG PET. However, practical aspects of 11C use limit clinical application. We report a phase I/IIa study assessing the clinical use of 18F-FMZ PET for the localization of the epileptogenic zone in patients with drug-resistant temporal lobe epilepsy (TLE). Receptor binding was quantified using kinetic modeling that did not require arterial sampling. Methods: Dynamic 18F-FMZ PET and static interictal 18F-FDG PET scans were compared in healthy controls (n = 17 for 18F-FMZ and n = 20 for 18F-FDG) and TLE patients with mesial temporal sclerosis on MR imaging (MTS, n = 12) and with normal MR imaging (NL TLE, n = 19). Masked visual assessment of images was undertaken. Parametric images of 18F-FMZ binding potential (BPND) were generated using the simplified reference tissue model. Region-of-interest analysis on coregistered MR images and statistical parametric mapping were used to quantify 18F-FMZ BPND and 18F-FDG uptake in the temporal lobe. Results: The visual assessment of static standardized uptake value images showed 18F-FMZ PET to have high specificity (16/17 [94%]) and moderate sensitivity (21/31 [68%]) for the localization of the epileptogenic zone, with a more restricted abnormality than 18F-FDG PET. However, the 18F-FMZ standardized uptake value images were falsely localizing in 3 of 31 patients (10%). Region-of-interest analysis demonstrated reductions in ipsilateral hippocampal 18F-FMZ BPND in patients with either MTS or NL TLE, compared with controls subjects. Ipsilateral hippocampal 18F-FMZ BPND was independent of both hippocampal volume and 18F-FDG uptake, whereas ipsilateral hippocampal volume was correlated with 18F-FDG uptake (r2 = 0.69, P < 0.0001). Statistical parametric mapping analysis demonstrated decreased uptake in 14 of 31 (45%) cases with 18F-FMZ PET and 18 of 29 (62%) with 18F-FDG PET. Cluster size was significantly smaller on 18F-FMZ than 18F-FDG images (37 vs. 160 voxels, P < 0.01). Conclusion: 18F-FMZ PET has potential as a clinical tool for the localization of the epileptogenic zone in the presurgical evaluation of drug-resistant TLE, providing information complementary to 18F-FDG PET, with a more restricted region of abnormality. © 2013 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
- ItemDevelopment of [18F]-Flumazenil-PET for localisation of the epileptogenic zone in patients with medically refractory focal epilepsy(Springer, 2010-10-11) Vivash, L; Grégoire, MC; Dedeurwaerdere, S; Bouilleret, V; Roselt, P; Lau, EW; Ware, RE; Binns, D; Katsifis, A; Hicks, RJ; Myers, DE; O'Brien, TJIntroduction: Studies of GABAA/central benzodiazepine receptor (GABAA/cBZR) distribution in the CNS using [11C]-flumazenil-PET (FMZ-PET) have enabled localisation of the epileptogenic zone (EZ) in patients with medically refractory epilepsy. [11C]-FMZ-PET images show a more restricted region of abnormality with increased sensitivity when compared with FDG-PET. However, use of [11C]-FMZ in routine clinical practice has been hindered by practical limitations of [11C]. The aim of the current study is to develop an [18F]-radiolabelled FMZ tracer with high specificity and improved imaging quality for EZ localisation in routine clinical practice. Methods: Preclinical studies: Presaturation, displacementand uptake PET scans were performed to define the kinetics of [18F]-FMZ binding in non-epileptic rats (n=8). Bmax (receptor density) and KD (binding affinity) were then quantified in the brains of epileptic (n=9; kainic acid-induced model of temporal lobe epilepsy) vs. non-epileptic control animals (n=10). Clinical study: 4 patient groups have been studied; healthy controls (n=20), patients with well-localised TLE from MRI scans (n=10), patients with lateralised TLE(n=7), and patients with other focal epilepsies (n=4). Each participant underwent a single 60 minute dynamic [18F]-FMZ-PET scan. Patients also underwent an FDG-PET scan. Blinded visual assessment of images to locate the EZ was performed. Parametric images of binding potential (BP) were generated. Datasets were processed using ROI analysis and SPM to assess differences in BP between patients and controls and localisation of the EZ in patients. Results:[18F]-FMZ was shown to be a suitable PET radiotracer for imaging GABAA/cBZR in vivo, with reversible and competitive binding and low non-specific binding. [18F]-FMZ-PET reliably detected decreased Bmax in the hippocampi of epilepticrats (left 16.3, right 15.9) compared with controls (left 20.9, right 19.8, p=0.022, p=0.049), with no change in KD (left 8.24 vs 8.46, p=0.82, right 7.43vs 8.07 p=0.56). There were no changes in whole brain Bmax or KD. To date the visual assessment of the clinical data has shown [18F]-FMZ-PET to have high sensitivity (100%) and positive predictive value (100%) for the EZ in patients, with a more restricted localisation of the EZ compared to FDG-PET. Quantitative analysis is ongoing. Conclusions: The pre-clinical studies have demonstrated that [18F]-FMZ-PET is a reliable radiotracer for quantification of CNSGABAA/cBZR expression in vivo. Preliminary analysis in our current clinical study indicates that [18F]-FMZ-PET also has excellent imaging characteristics in humans, and shows promise as a new clinical tool for localising the EZ in TLE patients. © 2020 Springer Nature Switzerland AG